試卷征集
加入會員
操作視頻

如圖(1),有A、B、C三種不同型號的卡片若干張,其中A型是邊長為a(a>b)的正方形,B型是長為a、寬為b的長方形,C型是邊長為b的正方形.
(1)若用A型卡片1張,B型卡片2張,C型卡片1張拼成了一個正方形(如圖(2)),此正方形的邊長為
a+b
a+b
,根據(jù)該圖形請寫出一條屬于因式分解的等式:
a2+2ab+b2=(a+b)2
a2+2ab+b2=(a+b)2

(2)若要拼一個長為2a+b,寬為a+2b的長方形,設(shè)需要A類卡片x張,B類卡片y張,C類卡片z張,則x+y+z=
9
9

(3)現(xiàn)有A型卡片1張,B型卡片6張,C型卡片11張,從這18張卡片中拿掉兩張卡片,余下的卡片全用上,你能拼出一個長方形或正方形嗎?有幾種拼法?請你通過運(yùn)算說明理由.

【答案】a+b;a2+2ab+b2=(a+b)2;9
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/19 8:0:9組卷:704引用:5難度:0.6
相似題
  • 1.若一個整數(shù)能表示成a2+b2(a、b是整數(shù))的形式,則稱這個數(shù)為“完美數(shù)”,
    例如,5是“完美數(shù)”.因為5=22+12
    再如,M=5x2+5y2=x2+y2+4x2+4y2
    =x2+y2+4x2+4y2+4xy-4xy
    =(x+2y)2+(2x-y)2(x、y是整數(shù)),所以M也是“完美數(shù)”.
    (1)請你再寫出一個小于20的“完美數(shù)”;
    (2)判斷9x2+1+4y2-12xy(x,y是整數(shù))是否為“完美數(shù)”;并說明原因.

    發(fā)布:2025/6/8 22:30:1組卷:69引用:1難度:0.7
  • 2.若實(shí)數(shù)x滿足x2-x-1=0,則代數(shù)式x3-2x2+2023的值為

    發(fā)布:2025/6/9 3:30:1組卷:527引用:6難度:0.6
  • 3.如果一個自然數(shù)M能分解成a×A,其中a為一位數(shù),A為兩位數(shù),且a與A的十位數(shù)字的和等于A的個位數(shù)字,則稱數(shù)M為“和數(shù)”,將“和數(shù)”分解成M=a×A的過程,稱為“和分解”,若a與A的十位數(shù)字的差等于A的個位數(shù)字,則稱數(shù)M為“差數(shù)”,將“差數(shù)”分解成M=a×A的過程,稱為“差分解”.
    例如:∵245=5×49,5+4=9,∴245為“和數(shù)”,
    ∵205=5×41,5-4=1,∴205為“差數(shù)”.
    又如∵195=3×65=5×39,3+6≠5,5+3≠9,且3-6≠5,5-3≠9,∴195既不是“和數(shù)”也不是“差數(shù)”.
    (1)判斷236是“和數(shù)”嗎?115是“差數(shù)”嗎?并說明理由;
    (2)將一個“和數(shù)”M進(jìn)行“和分解”,即
    M
    =
    m
    ×
    ab
    ,(1≤m≤8,1≤a≤8,2≤b≤9,m,a,b都為整數(shù)),將一個“差數(shù)”N進(jìn)行“差分解”,即
    N
    =
    n
    ×
    ac
    ,(2≤n≤9,1≤a≤8,1≤c≤8,n,a,c都為整數(shù)),記P(M)=m+a+b,P(N)=n+a+c,若
    P
    M
    P
    N
    能被3整除,求出所有滿足題意的M的值.

    發(fā)布:2025/6/9 1:30:1組卷:86引用:2難度:0.4
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正