如圖,拋物線y=-x2+6x交x軸正半軸于點A,頂點為M,對稱軸MB交x軸于點B.過點C(2,0)作射線CD交MB于點D(D在x軸上方),OE∥CD交MB于點E,EF∥x軸交CD于點F,作直線MF.
(1)求點A,M的坐標(biāo).
(2)當(dāng)BD為何值時,點F恰好落在該拋物線上?
(3)當(dāng)BD=1時
①求直線MF的解析式,并判斷點A是否落在該直線上.
②延長OE交FM于點G,取CF中點P,連接PG,△FPG,四邊形DEGP,四邊形OCDE的面積分別記為S1,S2,S3,則S1:S2:S3=3:4:83:4:8.
【考點】二次函數(shù)綜合題.
【答案】3:4:8
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:2156引用:52難度:0.5
相似題
-
1.已知函數(shù)y=
,記該函數(shù)圖象為G.-12x2+12x+m(x<m)x2-mx+m(x≥m)
(1)當(dāng)m=2時,
①已知M(4,n)在該函數(shù)圖象上,求n的值;
②當(dāng)0≤x≤2時,求函數(shù)G的最大值.
(2)當(dāng)m>0時,作直線x=m與x軸交于點P,與函數(shù)G交于點Q,若∠POQ=45°時,求m的值;12
(3)當(dāng)m≤3時,設(shè)圖象與x軸交于點A,與y軸交于點B,過點B作BC⊥BA交直線x=m于點C,設(shè)點A的橫坐標(biāo)為a,C點的縱坐標(biāo)為c,若a=-3c,求m的值.發(fā)布:2025/6/8 14:30:2組卷:3081引用:7難度:0.1 -
2.我們把一個半圓與拋物線的一部分合成的封閉圖形稱為“蛋圓”,如果一條直線與“蛋圓”只有一個交點,那么這條直線叫做“蛋圓”的切線.如圖所示,點A、B、C、D分別是“蛋圓”與坐標(biāo)軸的交點,已知點D的坐標(biāo)為(0,-3),AB為半圓的直徑,半圓圓心M的坐標(biāo)為(1,0),半圓半徑為2.
(1)請你求出“蛋圓”拋物線部分的解析式,并寫出自變量的取值范圍;
(2)你能求出經(jīng)過點C的“蛋圓”切線的解析式嗎?試試看;
(3)開動腦筋想一想,相信你能求出經(jīng)過點D的“蛋圓”切線的解析式.發(fā)布:2025/6/8 14:30:2組卷:237引用:45難度:0.1 -
3.如圖,一條拋物線與x軸相交于A、B兩點(點A在點B的左側(cè)),其頂點P在線段MN上移動.若點M、N的坐標(biāo)分別為(-1,-2)、(1,-2),點B的橫坐標(biāo)的最大值為3,則點A的橫坐標(biāo)的最小值為( )
發(fā)布:2025/6/8 8:0:6組卷:4103引用:19難度:0.7