在棱長為1的正四面體ABCD中,點(diǎn)M滿足AM=xAB+yAC+(1-x-y)AD,點(diǎn)N滿足DN=λDA-(λ-1)DB,當(dāng)AM、DN最短時(shí),AM?MN=( ?。?/h1>
AM
AB
AC
AD
DN
λ
DA
DB
AM
MN
【考點(diǎn)】平面向量數(shù)量積的性質(zhì)及其運(yùn)算.
【答案】A
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:330引用:13難度:0.6
相似題
-
1.如圖,△ABC中,D,E分別為邊BC,AC的中點(diǎn),且
與AD夾角120°,|BE|=1,|AD|=2,則BE=AB?AC發(fā)布:2025/1/24 8:0:2組卷:61引用:1難度:0.5 -
2.在矩形ABCD中,AB=6,AD=3.若點(diǎn)M是CD的中點(diǎn),點(diǎn)N是BC的三等分點(diǎn),且
,則BN=13BC=( ?。?/h2>AM?MN發(fā)布:2025/1/2 23:30:3組卷:82引用:2難度:0.8 -
3.若向量
=(1,2),AB=(3,-4),則CB?AB=( ?。?/h2>AC發(fā)布:2025/1/5 18:30:5組卷:190引用:3難度:0.8