如圖,一元二次方程x2+2x-3=0的二根x1,x2(x1<x2)是拋物線y=ax2+bx+c與x
軸的兩個交點B,C的橫坐標(biāo),且此拋物線過點A(3,6).
(1)求此二次函數(shù)的解析式;
(2)設(shè)此拋物線的頂點為P,對稱軸與線段AC相交于點Q,求點P和點Q的坐標(biāo);
(3)在x軸上有一動點M,當(dāng)MQ+MA取得最小值時,求M點的坐標(biāo).
【考點】二次函數(shù)綜合題.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/8/27 16:0:9組卷:276引用:35難度:0.1
相似題
-
1.綜合與探究
如圖,在平面直角坐標(biāo)系中,已知拋物線y=ax2+bx-8與x軸交于A,B兩點,與y軸交于點C,直線l經(jīng)過坐標(biāo)原點O,與拋物線的一個交點為D,與拋物線的對稱軸交于點E,連接CE,已知點A,D的坐標(biāo)分別為(-2,0),(6,-8).
(1)求拋物線的函數(shù)表達(dá)式,并分別求出點B和點E的坐標(biāo);
(2)試探究拋物線上是否存在點F,使△FOE≌△FCE?若存在,請直接寫出點F的坐標(biāo);若不存在,請說明理由;
(3)若點P是y軸負(fù)半軸上的一個動點,設(shè)其坐標(biāo)為(0,m),直線PB與直線l交于點Q,試探究:當(dāng)m為何值時,△OPQ是等腰三角形.發(fā)布:2025/5/21 16:30:2組卷:3083引用:12難度:0.1 -
2.如圖,二次函數(shù)y=
x2+bx-4的圖象與x軸交于點A,B(點A在點B的左側(cè)),且B(8,0),與y軸交于點C,點P是第四象限拋物線上一點,過點P作PD⊥x軸,垂足為D,PD交直線BC于點E.14
(1)填空:b=;
(2)若△CPE是以PE為底邊的等腰三角形,求點P的坐標(biāo);
(3)連接AC,過點P作直線l∥AC交y軸正半軸于點F.若OD=2OF,求點P的橫坐標(biāo).?
發(fā)布:2025/5/21 16:30:2組卷:317引用:1難度:0.3 -
3.如圖1,拋物線y=-
x2+bx+c交x軸于A,B(4,0)兩點,與y軸交于點C(0,4),點D為線段BC上的一個動點,過點D作EF⊥x軸于點E,交拋物線于點F,設(shè)E點的坐標(biāo)為E(m,0).13
?(1)求拋物線的表達(dá)式;
(2)當(dāng)m為何值時,DF有最大值,最大值是多少?
(3)如圖2,在(2)的條件下,直線EF上有一動點Q,連接QO,將線段QO繞點Q逆時針旋轉(zhuǎn)90°,使點O的對應(yīng)點P恰好落在該拋物線上,請直接寫出QP的函數(shù)表達(dá)式.(直接寫出結(jié)果)發(fā)布:2025/5/21 17:0:2組卷:183引用:1難度:0.3