對(duì)定義域是Df.Dg的函數(shù)y=f(x).y=g(x),
規(guī)定:函數(shù)h(x)=f(x)g(x),當(dāng)x∈Df且x∈Dg f(x),當(dāng)x∈Df且x?Dg g(x),當(dāng)x?Df且x∈Dg
.
(1)若函數(shù)f(x)=1x-1,g(x)=x2,寫(xiě)出函數(shù)h(x)的解析式;
(2)求問(wèn)題(1)中函數(shù)h(x)的值域;
(3)若g(x)=f(x+α),其中α是常數(shù),且α∈[0,π],請(qǐng)?jiān)O(shè)計(jì)一個(gè)定義域?yàn)镽的函數(shù)y=f(x),及一個(gè)α的值,使得h(x)=cos4x,并予以證明.
f ( x ) g ( x ) , 當(dāng) x ∈ D f 且 x ∈ D g |
f ( x ) , 當(dāng) x ∈ D f 且 x ? D g |
g ( x ) , 當(dāng) x ? D f 且 x ∈ D g |
1
x
-
1
【考點(diǎn)】分段函數(shù)的應(yīng)用.
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:940引用:8難度:0.1
相似題
-
1.已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=e-x(x-1).則下列結(jié)論正確的是( ?。?/h2>
發(fā)布:2024/12/20 4:30:1組卷:295引用:9難度:0.5 -
2.德國(guó)著名數(shù)學(xué)家狄利克雷在數(shù)學(xué)領(lǐng)域成就顯著,以其名命名的函數(shù)f(x)=
稱為狄利克雷函數(shù),關(guān)于函數(shù)f(x)有以下四個(gè)命題:1,x∈Q0,x∈?RQ
①f(f(x))=1;
②函數(shù)f(x)是偶函數(shù);
③任意一個(gè)非零有理數(shù)T,f(x+T)=f(x)對(duì)任意x∈R恒成立;
④存在三個(gè)點(diǎn)A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),使得△ABC為等邊三角形.
其中真命題的序號(hào)為.(寫(xiě)出所有正確命題的序號(hào))發(fā)布:2024/12/22 8:0:1組卷:22引用:2難度:0.5 -
3.德國(guó)著名數(shù)學(xué)家狄利克雷在數(shù)學(xué)領(lǐng)域成就顯著,以其名命名的函數(shù)f(x)=
被稱為狄利克雷函數(shù),則關(guān)于函數(shù)f(x)有以下四個(gè)命題:1,x∈Q0,x∈?RQ
①f(f(x))=0;
②函數(shù)f(x)是偶函數(shù);
③任意一個(gè)非零有理數(shù)T,f(x+T)=f(x)對(duì)任意x∈R恒成立;
④存在三個(gè)點(diǎn)A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),使得△ABC為等邊三角形.
其中真命題的個(gè)數(shù)是( ?。?/h2>發(fā)布:2024/12/22 8:0:1組卷:58引用:4難度:0.7
把好題分享給你的好友吧~~