已知拋物線C1:y2=2px(p>0),橢圓C2:x2a2+y2b2=1(a>b>0),拋物線與橢圓有共同的焦點(diǎn)F(4,0),且橢圓C2的離心率e=45.
(Ⅰ)求橢圓與拋物線的方程;
(Ⅱ)直線l1的方程為x=-4,若不經(jīng)過點(diǎn)P(4,8)的直線l2與拋物線交于A,B(A,B分別在x軸兩側(cè)),與直線l1交于點(diǎn)M,與橢圓交于點(diǎn)C,D,設(shè)PA,PM,PB的斜率分別為k1,k2,k3,若k1+k3=2k2.
(?。┳C明:直線l2恒過定點(diǎn);
(ⅱ)點(diǎn)D關(guān)于x軸的對稱點(diǎn)為D′,試問△CFD′的面積是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請說明理由.
x
2
a
2
+
y
2
b
2
4
5
【考點(diǎn)】直線與圓錐曲線的綜合.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:258引用:1難度:0.4
相似題
-
1.點(diǎn)P在以F1,F(xiàn)2為焦點(diǎn)的雙曲線
(a>0,b>0)上,已知PF1⊥PF2,|PF1|=2|PF2|,O為坐標(biāo)原點(diǎn).E:x2a2-y2b2=1
(Ⅰ)求雙曲線的離心率e;
(Ⅱ)過點(diǎn)P作直線分別與雙曲線漸近線相交于P1,P2兩點(diǎn),且,OP1?OP2=-274,求雙曲線E的方程;2PP1+PP2=0
(Ⅲ)若過點(diǎn)Q(m,0)(m為非零常數(shù))的直線l與(2)中雙曲線E相交于不同于雙曲線頂點(diǎn)的兩點(diǎn)M、N,且(λ為非零常數(shù)),問在x軸上是否存在定點(diǎn)G,使MQ=λQN?若存在,求出所有這種定點(diǎn)G的坐標(biāo);若不存在,請說明理由.F1F2⊥(GM-λGN)發(fā)布:2024/12/29 10:0:1組卷:64引用:5難度:0.7 -
2.已知兩個(gè)定點(diǎn)坐標(biāo)分別是F1(-3,0),F(xiàn)2(3,0),曲線C上一點(diǎn)任意一點(diǎn)到兩定點(diǎn)的距離之差的絕對值等于2
.5
(1)求曲線C的方程;
(2)過F1(-3,0)引一條傾斜角為45°的直線與曲線C相交于A、B兩點(diǎn),求△ABF2的面積.發(fā)布:2024/12/29 10:30:1組卷:84引用:1難度:0.9 -
3.若過點(diǎn)(0,-1)的直線l與拋物線y2=2x有且只有一個(gè)交點(diǎn),則這樣的直線有( )條.
發(fā)布:2024/12/29 10:30:1組卷:26引用:5難度:0.7
把好題分享給你的好友吧~~