綜合與實(shí)踐
如圖1所示,邊長為a的正方形中有一個(gè)邊長為b的小正方形,圖2是由圖1中陰影部分拼成的一個(gè)長方形,設(shè)圖1中陰影部分面積為S1,圖2中陰影部分面積為S2.

(1)請直接用含a和b的代數(shù)式表示S1=a2-b2a2-b2,S2=(a+b)(a-b)(a+b)(a-b);寫出利用圖形的面積關(guān)系所得到的公式:a2-b2=(a+b)(a-b)a2-b2=(a+b)(a-b)(用式子表達(dá)).
(2)依據(jù)這個(gè)公式,康康展示了“計(jì)算:(2+1)(22+1)(24+1)(28+1)”的解題過程.
解:原式=(2-1)(2+1)(22+1)(24+1)(28+1)=(22-1)(22+1)(24+1)(28+1)=(24-1)(24+1)(28+1)=(28-1)(28+1)=216-1.
在數(shù)學(xué)學(xué)習(xí)中,要學(xué)會(huì)觀察,嘗試從不同角度分析問題,請仿照康康的解題過程計(jì)算:2(3+1)(32+1)(34+1)(38+1)(316+1)+1.
(3)對數(shù)學(xué)知識(shí)要會(huì)舉一反三,請用(1)中的公式證明任意兩個(gè)相鄰奇數(shù)的平方差必是8的倍數(shù).
【考點(diǎn)】因式分解的應(yīng)用;平方差公式的幾何背景.
【答案】a2-b2;(a+b)(a-b);a2-b2=(a+b)(a-b)
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:1044引用:3難度:0.3