(1)閱讀材料
如圖1,三角形ABC中,AB=AC=4,三角形ABC的面積為10,P為底邊BC上一點,PE⊥AB,PF⊥AC,垂足分別為E,F(xiàn).易證PE+PF=5.解題過程如下:
如圖,連接AP,
∵PE⊥AB,PF⊥AC,
∴S△ABP=12AB?PE,S△ACP=12AC?PF.
∵S△ABP+S△ACP=S△ABC.
∴12AB?PE+12AC?PF=10.
12AB(PE+PF)=10.
∴PE+PF=10×2÷4=5.
結(jié)論:過等腰三角形底邊上的一點作兩腰的高,兩條高線之和等于等腰三角形面積的2倍再除以腰長.
(2)類比探究
如圖2,在邊長為5的菱形ABCD中,對角線BD=8,點P是直線BD上的動點,PE⊥AB于E,PF⊥AD于F.
①填空:
對角線AC的長是66;菱形ABCD的面積是2424.
②探究:
如圖2,當(dāng)點P在對角線BD上運動時,求PE+PF的值;
③拓展:
當(dāng)點P在對角線BD和DB的延長線上時,請直接寫出PE,PF之間的數(shù)量關(guān)系.

1
2
1
2
1
2
AB
?
PE
+
1
2
1
2
【考點】四邊形綜合題.
【答案】6;24
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:392引用:4難度:0.3
相似題
-
1.探究問題:
(1)方法感悟:
如圖①,在正方形ABCD中,點E,F(xiàn)分別為DC,BC邊上的點,且滿足∠EAF=45°,連接EF,求證DE+BF=EF.
感悟解題方法,并完成下列填空:
證明:延長CB到G,使BG=DE,連接AG,
∵四邊形ABCD為正方形,
∴AB=AD,∠ABC=∠D=90°,
∴∠ABG=∠D=90°,
∴△ADE≌△ABG.
∴AG=AE,∠1=∠2;
∵四邊形ABCD為正方形,
∴∠BAD=90°,
∵∠EAF=45°,
∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵∠1=∠2,
∴∠1+∠3=45°.
即∠GAF=∠.
又AG=AE,AF=AF,
∴△GAF≌.
∴FG=EF,
∵FG=FB+BG,
又BG=DE,
∴DE+BF=EF.
變化:在圖①中,過點A作AM⊥EF于點M,請直接寫出AM和AB的數(shù)量關(guān)系 ;
(2)方法遷移:
如圖②,將Rt△ABC沿斜邊AC翻折得到Rt△ADC,E,F(xiàn)分別是BC,CD邊上的點,∠EAF=∠BAD,連接EF,過點A作AM⊥EF于點M,試猜想DF,BE,EF之間有何數(shù)量關(guān)系,并證明你的猜想.試猜想AM與AB之間的數(shù)量關(guān)系,并證明你的猜想.12
(3)問題拓展:
如圖③,在四邊形ABCD中,AB=AD,E,F(xiàn)分別為DC,BC上的點,滿足∠EAF=∠DAB,試猜想當(dāng)∠B與∠D滿足什么關(guān)系時,可使得DE+BF=EF.請直接寫出你的猜想(不必說明理由).猜想:∠B與∠D滿足關(guān)系:.12發(fā)布:2025/6/24 19:0:1組卷:880引用:1難度:0.1 -
2.已知△ABC是等邊三角形,四邊形ADEF是菱形,∠ADE=120°(AD>AB).
(1)如圖①,當(dāng)AD與邊BC相交,點D與點F在直線AC的兩側(cè)時,BD與CF的數(shù)量關(guān)系為
(2)將圖①中的菱形ADEF繞點A旋轉(zhuǎn)α(0°<α<180°),如圖②.
Ⅰ.判斷(1)中的結(jié)論是否仍然成立,請利用圖②證明你的結(jié)論.
Ⅱ.若AC=4,AD=6,當(dāng)△ACE為直角三角形時,直接寫出CE的長度.發(fā)布:2025/6/25 7:30:2組卷:365引用:4難度:0.1 -
3.如圖,四邊形ABCD是正方形,E是正方形ABCD內(nèi)一點,F(xiàn)是正方形ABCD外一點,連接BE、CE、DE、BF、CF、EF.
(1)若∠EDC=∠FBC,ED=FB,試判斷△ECF的形狀,并說明理由.
(2)在(1)的條件下,當(dāng)BE:CE=1:2,∠BEC=135°時,求BE:BF的值.
(3)在(2)的條件下,若正方形ABCD的邊長為(3+3)cm,∠EDC=30°,求△BCF的面積.7發(fā)布:2025/6/24 17:30:1組卷:59引用:1難度:0.5