(一)問題提出
(1)平面直角坐標(biāo)系中,如果A、B是x軸上的點,他們對應(yīng)的橫坐標(biāo)分別是xA,xB,C、D是y軸上的兩點,它們對應(yīng)的縱坐標(biāo)分別是yc,yD,那么A、B兩點間的距離,C、D兩點間的距離分別是多少?
(2)平面直角坐標(biāo)系中任意一點P(x,y)到原點的距離是多少?
(3)已知平面上的兩點P1(x1,y1),P2(x2,y2),如何求P1,P2的距離|P1P2|.
(二)問題探究
(1)求平面直角坐標(biāo)系中x軸上的兩點E(5,0)、F(-2,0)之間的距離,可以借助絕對值表示|EF|=|5-(-2)|=7,對于y軸上兩點,M(0,-3)、N(0,5)之間的距離|MN|=|3-5|=2.
結(jié)論:在平面直角坐標(biāo)系中,如果A、B是x軸上兩點,它們對應(yīng)的橫坐標(biāo)分別是xA,xB,則A、B兩點間的距離|AB|=|xA-xB||xA-xB|;C、D是y軸上的兩點,它們對應(yīng)的縱坐標(biāo)分別是yc,yD,那么C、D兩點間的距離|CD|=|yC-yD||yC-yD|.
(2)如圖1:平面直角坐標(biāo)系中任意一點B(3,4),過B向x軸上作垂線,垂足為M,由勾股定理得|OB|=55;結(jié)論:平面直角坐標(biāo)系中任意一點P(x,y)到原點的距離|OP|=x2+y2x2+y2;
(3)如圖2,要求AB或DE的長度,可以轉(zhuǎn)化為求Rt△ABC或Rt△DEF的斜邊長,例如:從坐標(biāo)系中發(fā)現(xiàn):D(-7,5),E(4,-3)所以|DF|=|5-(-3)|=8,|EF|=|4-(-7)|=11,所以由勾股定理得:|DE|=82+112=185.在圖2中請用上面的方法求線段AB的長:AB=55;在圖3中:設(shè)P1(x1,y1),P2(x2,y2),試用x1,x2,y1,y2表示:|P1P2|=(x1-x2)2+(y1-y2)2(x1-x2)2+(y1-y2)2.
(三)拓展應(yīng)用
試用以上所得結(jié)論解決如下問題:已知A(0,1),B(4,3).
(1)直線AB與x軸交于點D,求線段BD的長.
(2)C為坐標(biāo)軸上的點,且使得△ABC是以AB為底邊的等腰三角形,則C的坐標(biāo)為 (3,0)或(0,6)(3,0)或(0,6)(不必寫出解答過程,直接寫出即可).

x
2
+
y
2
x
2
+
y
2
8
2
+
1
1
2
185
(
x
1
-
x
2
)
2
+
(
y
1
-
y
2
)
2
(
x
1
-
x
2
)
2
+
(
y
1
-
y
2
)
2
【考點】三角形綜合題.
【答案】|xA-xB|;|yC-yD|;5;;5;;(3,0)或(0,6)
x
2
+
y
2
(
x
1
-
x
2
)
2
+
(
y
1
-
y
2
)
2
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/2 15:0:2組卷:242引用:1難度:0.5
相似題
-
1.如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,動點P從點A出發(fā)沿線段AB以每秒3個單位長的速度運動至點B,過點P作PQ⊥AB交射線AC于點Q,設(shè)點P的運動時間為t秒(t>0).
(1)線段AQ的長為 ,線段PQ的長為 .(用含t的代數(shù)式表示)
(2)當(dāng)△APQ與△ABC的周長的比為1:4時,求t的值.
(3)設(shè)△APQ與△ABC重疊部分圖形的面積為S,求S與t之間的函數(shù)關(guān)系式.發(fā)布:2025/6/25 4:0:1組卷:19引用:1難度:0.3 -
2.如圖,在△ABC中,BC=5,AD⊥BC,BE⊥AC,AD,BE相交于點O,BD:CD=2:3,且AE=BE.
(1)求線段AO的長;
(2)動點P從點O出發(fā),沿線段OA以每秒1個單位長度的速度向終點A運動,動點Q從點B出發(fā)沿射線BC以每秒4個單位長度的速度運動.P,Q兩點同時出發(fā),當(dāng)點P到達A點時,P,Q兩點同時停止運動.設(shè)點P的運動時間為t秒,△AOQ的面積為S,請用含t的式子表示S,并直接寫出相應(yīng)的t的取值范圍;
(3)在(2)的條件下,點F是直線AC上的一點,且CF=BO,是否存在t值,使以點B,O,P為頂點的三角形與以點F,C,Q為頂點的三角形全等?若存在,請直接寫出符合條件的t值;若不存在,請說明理由.發(fā)布:2025/6/25 5:0:1組卷:191引用:3難度:0.4 -
3.已知等腰直角△ABC的直角邊AB=BC=10cm,點P,Q分別從A.C兩點同時出發(fā),均以1cm/s的相同速度做直線運動,已知P沿射線AB運動,Q沿邊BC的延長線運動,PQ與直線AC相交于點D.設(shè)P點運動時間為t,△PCQ的面積為S.
(1)求出S關(guān)于t的函數(shù)關(guān)系式.
(2)當(dāng)點P在線段AB上時,點P運動幾秒時,S△PCQ=S△ABC?14
(3)作PE⊥AC于點E,當(dāng)點P.Q運動時,線段DE的長度是否改變?證明你的結(jié)論.發(fā)布:2025/6/23 23:0:10組卷:243引用:1難度:0.1