探究活動(dòng)一:
如圖1,某數(shù)學(xué)興趣小組在研究直線上點(diǎn)的坐標(biāo)規(guī)律時(shí),在直線AB上的三點(diǎn)A(1,3)、B(2,5)、C(4,9),有kAB=5-32-1=2,kAC=9-34-1=2,發(fā)現(xiàn)kAB=kAC,興趣小組提出猜想:若直線y=kx+b(k≠0)上任意兩點(diǎn)坐標(biāo)P(x1,y1),Q(x2,y2)(x1≠x2),則kPQ=y2-y1x2-x1是定值.通過多次驗(yàn)證和查閱資料得知,猜想成立,kPQ是定值,并且是直線y=kx+b(k≠0)中的k,叫做這條直線的斜率.
請(qǐng)你應(yīng)用以上規(guī)律直接寫出過S(-2,-2)、T(4,2)兩點(diǎn)的直線ST的斜率kST=2323.
探究活動(dòng)二
數(shù)學(xué)興趣小組繼續(xù)深入研究直線的“斜率”問題,得到正確結(jié)論:任意兩條不和坐標(biāo)軸平行的直線互相垂直時(shí),這兩條直線的斜率之積是定值.
如圖2,直線DE與直線DF垂直于點(diǎn)D,D(2,2),E(1,4),F(xiàn)(4,3).請(qǐng)求出直線DE與直線DF的斜率之積.
綜合應(yīng)用
如圖3,⊙M為以點(diǎn)M為圓心,MN的長(zhǎng)為半徑的圓,M(1,2),N(4,5),請(qǐng)結(jié)合探究活動(dòng)二的結(jié)論,求出過點(diǎn)N的⊙M的切線的解析式.
5
-
3
2
-
1
9
-
3
4
-
1
y
2
-
y
1
x
2
-
x
1
2
3
2
3
【考點(diǎn)】圓的綜合題.
【答案】
2
3
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:1317引用:5難度:0.5
相似題
-
1.如圖,AB是圓O的直徑,AB=6,D是半圓ADB上的一點(diǎn),C是弧BD的中點(diǎn).
(1)若∠ABD=30°,求BC的長(zhǎng)和由弦BC、BD、和弧CD圍成的圖形面積;
(2)若弧AD的度數(shù)是120度,在半徑OB上是否存在點(diǎn)P,使得PC+PD的值最小,如果存在,請(qǐng)?jiān)趥溆脠D中畫出P的位置,并求PC+PD的最小值,如果不存在,請(qǐng)說明理由.發(fā)布:2025/1/28 8:0:2組卷:42引用:0難度:0.3 -
2.如圖,AB是圓O的直徑,弦CD與AB交于點(diǎn)H,∠BDC=∠CBE.
(1)求證:BE是圓O的切線;
(2)若CD⊥AB,AC=2,BH=3,求劣弧BC的長(zhǎng);
(3)如圖,若CD∥BE,作DF∥BC,滿足BC=2DF,連接FH、BF,求證:FH=BF.發(fā)布:2025/1/28 8:0:2組卷:96引用:1難度:0.1 -
3.如圖,AB是圓O的直徑,弦CD⊥AB于G,射線DO與直線CE相交于點(diǎn)E,直線DB與CE交于點(diǎn)H,且∠BDC=∠BCH.
(1)求證:直線CE是圓O的切線.
(2)如圖1,若OG=BG,BH=1,直接寫出圓O的半徑;
(3)如圖2,在(2)的條件下,將射線DO繞D點(diǎn)逆時(shí)針旋轉(zhuǎn),得射線DM,DM與AB交于點(diǎn)M,與圓O及切線CF分別相交于點(diǎn)N,F(xiàn),當(dāng)GM=GD時(shí),求切線CF的長(zhǎng).發(fā)布:2025/1/28 8:0:2組卷:775引用:2難度:0.1
相關(guān)試卷