試卷征集
加入會員
操作視頻

如圖,矩形ABCD,A(0,3)、B(6,0),點E在OB上,∠AEO=45°,點P從點Q(-4,0)出發(fā),沿x軸向右以每秒1個單位長的速度運動,運動時間為t秒.
(1)求點E的坐標;    
(2)當∠PAE=15°時,求t的值;
(3)以點P為圓心,PA為半徑的⊙P隨點P的運動而變化,當⊙P與四邊形AEBC的邊(或邊所在的直線)相切時,求t的值.

【考點】圓的綜合題
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:168引用:4難度:0.5
相似題
  • 1.已知,如圖:正方形ABCD,AB=4,動點E以
    2
    個單位每秒的速度從點A出發(fā)向終點C運動,同時動點F以2個單位每秒的速度從點B出發(fā),沿射線BC向右運動.當點E到達點C時,點E、點F同時停止運動.連接EF,以EF為直徑作⊙O,該圓與直線AC的另一個交點為點G.設(shè)運動時間為t.
    (1)當點F在BC邊上運動時,如圖①,
    ①填空:FC=
    ,AE=
    ;(用含有t的代數(shù)式表示)
    ②連接DE,DF,求證:△DEF是等腰直角三角形;
    (2)在運動的過程中,線段EG的長度是否發(fā)生變化?若變化,請說明理由;若不變,請求出這個定值;
    (3)在運動的過程中,要使得圓心O始終在正方形ABCD的內(nèi)部(不含邊界),請直接寫出點t的取值范圍.

    發(fā)布:2025/6/13 14:30:2組卷:257引用:4難度:0.1
  • 2.【閱讀材料】如圖1所示,對于平面內(nèi)⊙P,在⊙P上有弦AB,取弦AB的中點M,我們把弦AB的中點M到某點或某直線的距離叫做弦AB到這點或者這條直線的“密距”.例如:圖1中線段MO的長度即為弦AB到原點O的“密距”,過點M作y軸的垂線交y軸于點N,線段MN的長度即為弦AB到y(tǒng)軸的“密距”.
    【類比應(yīng)用】已知⊙P的圓心為P(0,8),半徑為4,弦AB的長度為4,弦AB的中點為M.
    (1)當AB∥y軸時,如圖2所示,圓心P到弦AB的中點M的距離是
    ,此時弦AB到原點O的“密距”是

    (2)①如果弦AB在⊙P上運動,在運動過程中,圓心P到弦AB的中點M的距離變化嗎?若不變化,請求出PM的長,若變化,請說明理由.
    ②直接寫出弦AB到原點的“密距”d的取值范圍

    【拓展應(yīng)用】如圖3所示,已知⊙P的圓心為P(0,8),半徑為4,點A(0,4),點B為⊙P上的一動點,弦AB到直線y=-x-6的“密距”的最大值是
    (直接寫出答案).

    發(fā)布:2025/6/13 11:0:2組卷:198引用:3難度:0.2
  • 3.在平面直角坐標系xOy中,給定⊙C,若將線段AB繞原點O逆時針旋轉(zhuǎn)α(0°<α<180°),使得旋轉(zhuǎn)后對應(yīng)的線段A′B′所在直線與⊙C相切,并且切點P在線段A′B′上,則稱線段AB是⊙C的旋轉(zhuǎn)切線段,其中滿足題意的最小的α稱為關(guān)于⊙C和線段AB的最小旋轉(zhuǎn)角.
    已知C(0,2),⊙C的半徑為1.
    (1)如圖1,A(2,0),線段OA是⊙C的旋轉(zhuǎn)切線段,寫出關(guān)于⊙C和線段OA的最小旋轉(zhuǎn)角為
    °;
    (2)如圖2,點A1,B1,A2,B2,A3,B3的橫、縱坐標都是整數(shù).在線段A1B1,A2B2,A3B3中,⊙C的旋轉(zhuǎn)切線段是
    ;
    (3)已知B(1,0),D(t,0),若線段BD是⊙C的旋轉(zhuǎn)切線段,求t的取值范圍;
    (4)已知點M的橫坐標為m,存在以M為端點,長度為
    3
    的線段是⊙C的旋轉(zhuǎn)切線段,直接寫出m的取值范圍.

    發(fā)布:2025/6/13 11:30:2組卷:258引用:4難度:0.1
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正