雨傘生活中的常見物品,撐開后的雨傘(如圖1)是我們熟悉的數(shù)學(xué)模型——拋物線.在如圖2所示的直角坐標(biāo)系中,傘柄在y軸上,傘骨OA,OB的交點(diǎn)為坐標(biāo)原點(diǎn)O,點(diǎn)C為拋物線的頂點(diǎn),OC=1:點(diǎn)A,B在拋物線上,且OA、OB關(guān)于y軸對稱,點(diǎn)A到x軸的距離是35.A、B兩點(diǎn)之間的距離為4.
(1)①點(diǎn)C坐標(biāo)為 (0,1)(0,1);②點(diǎn)A坐標(biāo)為 (2,0.6)(2,0.6);③拋物線的表達(dá)式為 y=-0.1x2+1y=-0.1x2+1;
(2)分別延長AO,BO,交拋物線于點(diǎn)F,E,求E,F(xiàn)兩點(diǎn)之間的距離;
(3)以拋物線與坐標(biāo)軸的三個交點(diǎn)為頂點(diǎn)的三角形面積為S1,將拋物線沿水平方向平移m個單位,得到一條新拋物線,以新拋物線與坐標(biāo)軸的三個交點(diǎn)為頂點(diǎn)的三角形面積為S2.若S2=35S1.求m的值.![](https://img.jyeoo.net/quiz/images/svg/202311/278/241c2593.png)
3
5
3
5
【考點(diǎn)】二次函數(shù)綜合題.
【答案】(0,1);(2,0.6);y=-0.1x2+1
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/6 4:0:1組卷:147引用:2難度:0.1
相似題
-
1.如圖,已知拋物線y=ax2+bx-2與x軸的兩個交點(diǎn)是A(4,0),B(1,0),與y軸的交點(diǎn)是C.
(1)求該拋物線的解析式;
(2)在直線AC上方的該拋物線上是否存在一點(diǎn)D,使得△DCA的面積最大?若存在,求出點(diǎn)D的坐標(biāo)及△DCA面積的最大值;若不存在,請說明理由;
(3)設(shè)拋物線的頂點(diǎn)是F,對稱軸與AC的交點(diǎn)是N,P是在AC上方的該拋物線上一動點(diǎn),過P作PM⊥x軸,交AC于M.若P點(diǎn)的橫坐標(biāo)是m.問:
①m取何值時,過點(diǎn)P、M、N、F的平面圖形不是梯形?
②四邊形PMNF是否有可能是等腰梯形?若有可能,請求出此時m的值;若不可能,請說明理由.發(fā)布:2025/1/2 8:0:1組卷:82引用:1難度:0.5 -
2.如圖,我們把一個半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”.已知點(diǎn)A、B、C、D分別是“果圓”與坐標(biāo)軸的交點(diǎn),拋物線的解析式為y=x2-2x-3,AB為半圓的直徑,則這個“果圓”被y軸截得的弦CD的長為.
發(fā)布:2024/12/23 17:30:9組卷:3648引用:37難度:0.4 -
3.如圖,將矩形OABC置于平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(0,4),點(diǎn)C在x軸上,點(diǎn)D(3
,1)在BC上,將矩形OABC沿AD折疊壓平,使點(diǎn)B落在坐標(biāo)平面內(nèi),設(shè)點(diǎn)B的對應(yīng)點(diǎn)為點(diǎn)E.若拋物線y=ax2-45ax+10(a≠0且a為常數(shù))的頂點(diǎn)落在△ADE的內(nèi)部,則a的取值范圍是( )5發(fā)布:2024/12/26 1:30:3組卷:2665引用:7難度:0.7