綜合與實踐
旋轉(zhuǎn)是幾何圖形運動中的一種重要變換,通常與全等三角形等數(shù)學知識相結(jié)合來解決實際問題,某學校數(shù)學興趣小組在研究三角形旋轉(zhuǎn)的過程中,進行如下探究:如圖1,△ABC和△DMN均為等腰直角三角形,∠BAC=∠MDN=90°,點D為BC中點,△DMN繞點D旋轉(zhuǎn),連接AM、CN.
觀察猜想
(1)在△DMN旋轉(zhuǎn)過程中,AM與CN的數(shù)量關系為 AM=CNAM=CN;
實踐發(fā)現(xiàn)
(2)當點M、N在△ABC內(nèi)且C、M、N三點共線時,如圖2,求證:CM-AM=2DM;
拓展延伸
(3)當點M、N在△ABC外且C、M、N三點共線時,如圖3,探究AM、CM、DM之間的數(shù)量關系是 CM+AM=2DMCM+AM=2DM;
解決問題
(4)若△ABC中,AB=5,在△DMN旋轉(zhuǎn)過程中,當AM=3且C、M、N三點共線時,DM=6-22或2+626-22或2+62.
CM
-
AM
=
2
DM
2
2
AB
=
5
AM
=
3
6
-
2
2
2
+
6
2
6
-
2
2
2
+
6
2
【考點】幾何變換綜合題.
【答案】AM=CN;CM+AM=DM;或
2
6
-
2
2
2
+
6
2
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/4/26 11:36:51組卷:183引用:3難度:0.1
相似題
-
1.如圖,在等邊△ABC中,點D在BC邊上,點E在AC的延長線上,且DE=DA.
(1)求證:∠BAD=∠EDC;
(2)點E關于直線BC的對稱點為M,聯(lián)結(jié)DM,AM.
①根據(jù)題意將圖補全;
②在點D運動的過程中,DA和AM有什么數(shù)量關系并證明.發(fā)布:2024/12/23 14:0:1組卷:259引用:2難度:0.2 -
2.如圖(1),在矩形ABCD中,AB=6,BC=2
,點O是AB的中點,點P在AB的延長線上,且BP=3.一動點E從O點出發(fā),以每秒1個單位長度的速度沿OA勻速運動,到達A點后,立即以原速度沿AO返回;另一動點F從P點出發(fā),以每秒1個單位長度的速度沿射線PA勻速運動,點E、F同時出發(fā),當兩點相遇時停止運動,在點E、F的運動過程中,如圖(2)以EF為邊作等邊△EFG,使△EFG和矩形ABCD在射線PA的同側(cè).設運動的時間為t秒(t>0).3
(1)如圖(3),當?shù)冗叀鱁FG的邊FG恰好經(jīng)過點C時,求運動時間t的值;
(2)如圖(4),當?shù)冗叀鱁FG的頂點G恰好落在CD邊上時,求運動時間t的值;
(3)在整個運動過程中,設等邊△EFG和矩形ABCD重疊部分的面積為S,請求出S與t之間的函數(shù)關系式,并寫出相應的自變量,的取值范圍.發(fā)布:2025/1/13 8:0:2組卷:357引用:2難度:0.5 -
3.如圖,點M為矩形ABCD的邊BC上一點,將矩形ABCD沿AM折疊,使點B落在邊CD上的點E處,EB交AM于點F,在EA上取點G,使EG=EC.若GF=6,sin∠GFE=
,則AB=.45發(fā)布:2024/12/23 8:0:23組卷:414引用:2難度:0.1