甲、乙兩所學校之間進行排球比賽,采用五局三勝制(先贏3局的學校獲勝,比賽結束).約定比賽規(guī)則如下:先進行兩局男生排球比賽,后進行女生排球比賽.按照以往比賽經(jīng)驗,在男生排球比賽中,每局甲校獲勝的概率為23,乙校獲勝的概率為13,在女生排球比賽中,每局甲校獲勝的概率為13,乙校獲勝的概率為23,設各局比賽相互之間沒有影響且無平局.
(Ⅰ)求恰好比賽3局,比賽結束的概率;
(Ⅱ)求甲校以3:1獲勝的概率.
2
3
1
3
1
3
2
3
【考點】相互獨立事件和相互獨立事件的概率乘法公式.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/4/28 8:51:19組卷:6引用:3難度:0.7
相似題
-
1.甲、乙兩人進行圍棋比賽,共比賽2n(n∈N*)局,且每局甲獲勝的概率和乙獲勝的概率均為
.如果某人獲勝的局數(shù)多于另一人,則此人贏得比賽.記甲贏得比賽的概率為P(n),則( ?。?/h2>12發(fā)布:2024/12/29 12:0:2組卷:246引用:6難度:0.6 -
2.小王同學進行投籃練習,若他第1球投進,則第2球投進的概率為
;若他第1球投不進,則第2球投進的概率為23.若他第1球投進概率為13,他第2球投進的概率為( )23發(fā)布:2024/12/29 12:0:2組卷:293引用:5難度:0.7 -
3.某市在市民中發(fā)起了無償獻血活動,假設每個獻血者到達采血站是隨機的,并且每個獻血者到達采血站和其他的獻血者到達采血站是相互獨立的.在所有人中,通常45%的人的血型是O型,如果一天內(nèi)有10位獻血者到達采血站獻血,用隨機模擬的方法來估計一下,這10位獻血者中至少有4位的血型是O型的概率.
發(fā)布:2024/12/29 11:0:2組卷:1引用:1難度:0.7