先閱讀,后解題.
已知m2+2m+n2-6n+10=0,求m和n的值.
解:等式可變形為(m2+2m+1)+(n2-6n+9)=0.
即(m+1)2+(n-3)2=0.
∵(m+1)2≥0,(n-3)2≥0,
∴m+1=0,n-3=0,
∴m=-1,n=3.
像這樣將代數(shù)式進(jìn)行恒等變形,使代數(shù)式中出現(xiàn)完全平方式的方法叫作“配方法”.
請(qǐng)你利用配方法,解決下列問題:
(1)已知a,b是長方形ABCD的長與寬,滿足a2+b2-8a-6b+25=0,則長方形ABCD的面積是 1212;
(2)求代數(shù)式a2+4b2+4ab-4a-8b+7的最小值,并求出此時(shí)a,b滿足的數(shù)量關(guān)系;
(3)請(qǐng)比較多項(xiàng)式x2+3x-4與2x2+2x-3的大小,并說明理由.
【答案】12
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/5/28 8:0:9組卷:270引用:3難度:0.4
相似題
-
1.設(shè)x,y都是實(shí)數(shù),請(qǐng)?zhí)骄肯铝袉栴},
(1)嘗試:①當(dāng)x=-2,y=1時(shí),∵x2+y2=5,2xy=-4,∴x2+y2>2xy.
②當(dāng)x=1,y=2時(shí),∵x2+y2=5,2xy=4,∴x2+y2>2xy.
③當(dāng)x=2,y=2.5時(shí),∵x2+y2=10.25,2xy=10,∴x2+y2>2xy.
④當(dāng)x=3,y=3時(shí),∵x2+y2=18,2xy=18,∴x2+y22xy.
(2)歸納:x2+y2與2xy有怎樣的大小關(guān)系?試說明理由.
(3)運(yùn)用:求代數(shù)式的最小值.x2+4x2發(fā)布:2025/5/21 17:30:1組卷:188引用:2難度:0.5 -
2.基本不等式的性質(zhì):一般地,對(duì)于a>0,b>0,我們有a+b≥2
,當(dāng)且僅當(dāng)a=b時(shí)等號(hào)成立.例如:若a>0,則a+ab=6,當(dāng)且僅當(dāng)a=3時(shí)取等號(hào),a+9a≥2a?9a的最小值等于6.根據(jù)上述性質(zhì)和運(yùn)算過程,若x>1,則4x+9a的最小值是( ?。?/h2>1x-1發(fā)布:2025/5/23 13:30:1組卷:839引用:6難度:0.4 -
3.已知a,b,c滿足4a2+2b-4=0,b2-4c+1=0,c2-12a+17=0,則a2+b2+c2等于( ?。?/h2>
發(fā)布:2024/12/23 12:30:2組卷:397引用:9難度:0.4