如圖,點P是正方形ABCD內(nèi)的一點,連接CP,將線段CP繞點C順時針旋轉(zhuǎn)90°,得到線段CQ,連接BP,DQ
(1)如圖a,求證:△BCP≌△DCQ;
(2)如圖,延長BP交直線DQ于點E.
①如圖b,求證:BE⊥DQ;
②如圖c,若△BCP為等邊三角形,判斷△DEP的形狀,并說明理由,
(3)填空:若正方形ABCD的邊長為10,DE=2,PB=PC,則線段PB的長為254或253254或253.

25
4
25
3
25
4
25
3
【考點】四邊形綜合題;旋轉(zhuǎn)的性質(zhì);相似三角形的判定與性質(zhì);解一元二次方程-因式分解法;全等三角形的判定與性質(zhì);等腰三角形的性質(zhì);等邊三角形的性質(zhì);勾股定理.
【答案】或
25
4
25
3
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:913引用:5難度:0.1
相似題
-
1.如圖,四邊形ABCD中,已知∠BAC=∠BDC=90°,且AB=AC.
(1)求證:∠ABD=∠ACD;
(2)記△ABD的面積為S1,△ACD的面積為S2.
①求證:S1-S2=AD2;12
②過點B作BC的垂線,過點A作BC的平行線,兩直線相交于M,延長BD至P,使得DP=CD,連接MP.當MP取得最大值時,求∠CBD的大?。?/h2>發(fā)布:2025/6/8 23:0:1組卷:308引用:4難度:0.1 -
2.(1)如圖1,在四邊形ABCD中,∠B=∠C=90°,點E是邊BC上一點,AB=EC,BE=CD,連接AE、DE.判斷△AED的形狀,并說明理由;
(2)在平面直角坐標系中,已知點A(2,0),點B(5,1),點C在第一象限內(nèi),若△ABC是等腰直角三角形,求點C的坐標;
(3)如圖2,在平面直角坐標系中,已知點A(0,1),點C是x軸上的動點,線段CA繞著點C按順時針方向旋轉(zhuǎn)90°至線段CB,連接BO、BA,則BO+BA的最小值是 .發(fā)布:2025/6/8 23:30:1組卷:886引用:3難度:0.3 -
3.如圖,正方形ABCD中,AE=BF.
(1)求證:△BCE≌△CDF;
(2)求證:CE⊥DF;
(3)若CD=6,且DG2+GE2=41,則BE=.發(fā)布:2025/6/8 23:30:1組卷:360引用:3難度:0.6