如圖,已知三棱柱ABC-A1B1C1,平面A1ACC1⊥平面ABC,∠ABC=90°,∠BAC=30°,A1A=A1C=AC,E,F(xiàn)分別是AC,A1B1的中點(diǎn).
(1)證明:EF⊥BC;
(2)求直線EF與平面A1BC所成角的余弦值;
(3)求平面AA1C與平面A1CB夾角的正弦值.
【考點(diǎn)】空間向量法求解二面角及兩平面的夾角;直線與平面所成的角.
【答案】(1)證明見解答.(2).
(3)平面AA1C與平面A1CB夾角的正弦值為.
cosθ
=
3
5
(3)平面AA1C與平面A1CB夾角的正弦值為
2
5
5
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:433引用:1難度:0.5
相似題
-
1.“阿基米德多面體”也稱為半正多面體,是由邊數(shù)不全相同的正多邊形為面圍成的多面體,它體現(xiàn)了數(shù)學(xué)的對(duì)稱美.如圖,將一個(gè)正方體沿交于一頂點(diǎn)的三條棱的中點(diǎn)截去一個(gè)三棱錐,共可截去八個(gè)三棱錐,得到八個(gè)面為正三角形,六個(gè)面為正方形的“阿基米德多面體”,則該多面體中具有公共頂點(diǎn)的兩個(gè)正三角形所在平面的夾角正切值為( ?。?/h2>
發(fā)布:2024/11/9 21:30:1組卷:173引用:3難度:0.5 -
2.如圖,三棱柱ABC-A1B1C1滿足棱長(zhǎng)都相等且AA1⊥平面ABC,D是棱CC1的中點(diǎn),E是棱AA1上的動(dòng)點(diǎn).設(shè)AE=x,隨著x增大,平面BDE與底面ABC所成銳二面角的平面角是( ?。?/h2>
發(fā)布:2024/12/11 21:0:1組卷:1628引用:12難度:0.3 -
3.如圖,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC=2,BC=CC1=4,點(diǎn)D是棱AB的中點(diǎn),則平面ABB1A1與平面B1CD所成角的正弦值為( )
發(fā)布:2024/11/15 14:30:2組卷:446引用:2難度:0.6