如圖,在平面直角坐標系中,點A(10,0),以OA為直徑在第一象限內(nèi)作半圓,B為半圓上一點,連接AB并延長至C,使BC=AB,過C作CD⊥x軸于點D,交線段OB于點E,已知CD=8,拋物線經(jīng)過O、E、A三點.
(1)∠OBA=9090°.
(2)求拋物線的函數(shù)表達式.
(3)若P為拋物線上位于第一象限內(nèi)的一個動點,以P、O、A、E為頂點的四邊形面積記作S,則S取何值時,相應的點P有且只有3個?
【考點】二次函數(shù)綜合題.
【答案】90
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2025/6/19 9:0:1組卷:2336引用:52難度:0.5
相似題
-
1.對于平面直角坐標系xOy中的點P(m,n),定義一種變換:作點P(m,n)關于y軸對稱的點P′,再將P′向左平移k(k>0)個單位得到點Pk′,Pk′叫做對點P(m,n)的k階“?”變換.若一個函數(shù)圖象上所有點都進行了k階“?”變換后組成的圖形稱為此函數(shù)進行了k階“?”變換后的圖形.
(1)求P(3,2)的3階“?”變換后P3′的坐標;
(2)若直線y=x+1經(jīng)過k階“?”變換后的圖象與反比例函數(shù)的圖象y=沒有公共點,求k的取值范圍.2x
(3)若拋物線C1:y=x2-4x+3與直線l:y=-x+3交于A,B兩點,拋物線C1經(jīng)過k階“?”變換后的圖象記為C2,C2與直線l交于C,D兩點,若=CDAB,求k的值.73發(fā)布:2025/6/22 7:30:1組卷:186引用:1難度:0.1 -
2.六個函數(shù)分別是①y=x;②y=-x+1;③y=x2;④y=-x2+2x-1;⑤y=x3;⑥y=-x3+1.
(1)其中一次函數(shù)是①,②,二次函數(shù)是③,④,則⑤,⑥的函數(shù)可以定義為
(2)我們可以借鑒以前研究函數(shù)的經(jīng)驗,先探索函數(shù)y=x3的圖象和性質;
①填寫下表,畫出函數(shù)的圖象;
②觀察圖象,寫出該函數(shù)兩條不同類型的性質;
(3)若點A(a,b)(a>0)是函數(shù)y=x3圖象上一點,點A關于y軸的對稱點為點B,點A關于原點O的對稱點為點C,若順次連接A,B,C,則△ABC的形狀為x … -2 - 32-1 0 1 322 … y=x3 … …
(4)函數(shù)y=-x3+1的圖象關于點發(fā)布:2025/6/22 8:30:1組卷:47引用:2難度:0.3 -
3.如圖1,二次函數(shù)y=ax2-2ax-3a(a<0)的圖象與x軸交于A、B兩點(點A在點B的右側),與y軸的正半軸交于點C,頂點為D.
(1)求頂點D的坐標(用含a的代數(shù)式表示);
(2)若以AD為直徑的圓經(jīng)過點C.
①求拋物線的函數(shù)關系式;
②如圖2,點E是y軸負半軸上一點,連接BE,將△OBE繞平面內(nèi)某一點旋轉180°,得到△PMN(點P、M、N分別和點O、B、E對應),并且點M、N都在拋物線上,作MF⊥x軸于點F,若線段MF:BF=1:2,求點M、N的坐標;
③點Q在拋物線的對稱軸上,以Q為圓心的圓過A、B兩點,并且和直線CD相切,如圖3,求點Q的坐標.發(fā)布:2025/6/22 11:0:2組卷:4122引用:11難度:0.1