試卷征集
加入會(huì)員
操作視頻

【問題】用n邊形的對(duì)角線把n邊形分割成(n-2)個(gè)三角形,共有多少種不同的分割方案(n≥4)?
【探究】為了解決上面的數(shù)學(xué)問題,我們采取一般問題特殊化的策略,先從最簡(jiǎn)單情形入手,再逐次遞進(jìn)轉(zhuǎn)化,最后猜想得出結(jié)論.不妨假設(shè)n邊形的分割方案有f(n)種.
探究一:用四邊形的對(duì)角線把四邊形分割成2個(gè)三角形,共有多少種不同的分割方案?如圖①,圖②,顯然,只有2種不同的分割方案.所以,f(4)=2.
探究二:用五邊形的對(duì)角線把五邊形分割成3個(gè)三角形,共有多少種不同的分割方案?
不妨把分割方案分成三類:
第1類:如圖③,用A,E與B連接,先把五邊形分割轉(zhuǎn)化成1個(gè)三角形和1個(gè)四邊形,再把四邊形分割成2個(gè)三角形,由探究一知,有f(4)種不同的分割方案,所以,此類共有f(4)種不同的分割方案.
第2類:如圖④,用點(diǎn)A,E與C連接,把五邊形分割成3個(gè)三角形,有1種不同的分割方案,可視為
1
2
f
4
種分割方案.
第3類:如圖⑤,用點(diǎn)A,E與D連接,先把五邊形分割轉(zhuǎn)化成1個(gè)三角形和1個(gè)四邊形,再把四邊形分割成2個(gè)三角形,由探究一知,有f(4)種不同的分割方案,所以,此類共有f(4)種不同的分割方案.
所以,f(5)=f(4)+
1
2
f
4
+
f
4
=
5
2
×
f
4
=
10
4
×
f
4
=5(種)
探究三:用六邊形的對(duì)角線把六邊形分割成4個(gè)三角形,共有多少種不同的分割方案?
不妨把分割方案分成四類:
第1類:如圖⑥,用A,F(xiàn)與B連接,先把六邊形分割轉(zhuǎn)化成1個(gè)三角形和1個(gè)五邊形,再把五邊形分割成3個(gè)三角形,由探究二知,有f(5)種不同的分割方案,所以,此類共有f(5)種不同的分割方案.
第2類:如圖⑦,用A,F(xiàn)與C連接,先把六邊形分割轉(zhuǎn)化成2個(gè)三角形和1個(gè)四邊形.再把四邊形分割成2個(gè)三角形,由探究一知,有f(4)種不同的分割方案.所以,此類共有f(4)種分割方案.
第3類:如圖⑧,用A,F(xiàn)與D連接,先把六邊形分割轉(zhuǎn)化成2個(gè)三角形和1個(gè)四邊形.再把四邊形分割成2個(gè)三角形,由探究一知,有f(4)種不同的分割方案.所以,此類共有f(4)種分割方案.
第4類:如圖⑨,用A,F(xiàn)與E連接,先把六邊形分割轉(zhuǎn)化成1個(gè)三角形和1個(gè)五邊形.再把五邊形分割成3個(gè)三角形,由探究二知,有f(5)種不同的分割方案.所以,此類共有f(5)種分割方案.
所以,f(6)=f(5)+f(4)+f(4)+f(5)=f(5)+
2
5
f
5
+
2
5
f
5
+
f
5
=
14
5
f
5
=14(種)
探究四:用七邊形的對(duì)角線把七邊形分割成5個(gè)三角形,則f(7)與f(6)的關(guān)系為:f(7)=
??
6
×f(6),共有
42
42
種不同的分割方案.

【結(jié)論】用n邊形的對(duì)角線把n邊形分割成(n-2)個(gè)三角形,共有多少種不同的分割方案(n≥4)?(直接寫出f(n)與f(n-1)的關(guān)系式,不寫解答過程).
【應(yīng)用】用九邊形的對(duì)角線把九邊形分割成7個(gè)三角形,共有多少種不同的分割方案?(應(yīng)用上述結(jié)論,寫出解答過程)

【考點(diǎn)】四邊形綜合題
【答案】42
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:32引用:1難度:0.1
相似題
  • 1.如圖所示,在平行四邊形ABCD中,∠DAC=60°,點(diǎn)E是BC邊上一點(diǎn),連接AE,AE=AB,點(diǎn)F是對(duì)角線AC邊上一動(dòng)點(diǎn),連接EF.
    (1)如圖1,若點(diǎn)F與對(duì)角線交點(diǎn)O重合,已知BE=4,OC:EC=5:3,求AC的長(zhǎng)度;
    (2)如圖2,若EC=FC,點(diǎn)G是AC邊上一點(diǎn),連接BG、EG,已知∠AEG=60°,∠AGB+∠BCD=180°,求證:BG+EG=DC.
    (3)如圖3,若BE=4,CE=
    4
    3
    3
    ,將EF繞點(diǎn)E逆時(shí)針旋轉(zhuǎn)90°得EF',請(qǐng)直接寫出當(dāng)AF'+
    1
    2
    BF'取得最小值時(shí)△ABF′的面積.

    發(fā)布:2025/6/21 23:30:2組卷:402引用:1難度:0.4
  • 2.平行四邊形ABCD中,AB⊥AC,點(diǎn)E在邊AD上,連BE.
    (1)如圖1,AC交BE于點(diǎn)G,若BE平分∠ABC,且∠DAC=30°,CG=2,請(qǐng)求出四邊形EGCD的面積;
    (2)如圖2,點(diǎn)F在對(duì)角線AC上,且AF=AB,連BF,過點(diǎn)F作FH⊥BE于H,連AH并延長(zhǎng)交CD于點(diǎn)M,點(diǎn)N在邊AD上,連MN.若AN=BF,2∠NMD=∠DAC+∠HBF,求證:HF+
    2
    AH=AC.
    (3)如圖3,線段PO在線段BE上運(yùn)動(dòng),點(diǎn)R在邊BC上,連接CQ、PR.若BE平分∠ABC,∠DAC=30°,AB=
    3
    ,PQ=
    3
    2
    ,BC=4BR.請(qǐng)直接寫出線段CQ+PQ+PR的和的最小值以及此時(shí)△CQE的面積.

    發(fā)布:2025/6/22 1:0:1組卷:261引用:3難度:0.5
  • 3.如圖,四邊形ABCD是平行四邊形,點(diǎn)E、F在BC上,且CF=BE,連接DE,過點(diǎn)F作FG⊥AB于點(diǎn)G.

    (1)如圖1,若∠B=60°,DE平分∠ADC,且CD=2
    3
    CF,CD=6,求平行四邊形ABCD的面積.
    (2)點(diǎn)H在GF上,且HE=HF,延長(zhǎng)EH交AC,CD于點(diǎn)O,Q,連接AQ,若AC=BC=EQ,∠EQC=45°,求證:CE=
    2
    BG+DQ.

    發(fā)布:2025/6/21 23:0:2組卷:155引用:1難度:0.1
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請(qǐng)立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正