把代數(shù)式通過配方等手段得到完全平方式,再運用完全平方式的非負(fù)性這一性質(zhì)解決問題,這種解題方法叫做配方法.配方法在代數(shù)式求值,解方程,最值問題等都有廣泛的應(yīng)用.如利用配方法求最小值,求a2+6a+8的最小值.
解:a2+6a+8=a2+6a+32-32+8=(a+3)2-1,因為不論a取何值,(a+3)2總是非負(fù)數(shù),即(a+3)2≥0.所以(a+3)2-1≥-1,所以當(dāng)a=-3時,a2+6a+8有最小值-1.
根據(jù)上述材料,解答下列問題:
(1)填空:x2-10x+2525=(x-55)2;
(2)將x2-8x+2變形為(x+m)2+n的形式,并求出x2-8x+2的最小值;
(3)若M=4a2+9a+3,N=3a2+11a-1,其中a為任意數(shù),試比較M與N的大小,并說明理由.
【答案】25;5
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/21 2:0:8組卷:192引用:2難度:0.6