如圖,CD是經(jīng)過∠BCA頂點(diǎn)C的一條直線,CA=CB,E、F分別是直線CD上兩點(diǎn),且∠BEC=∠CFA=α.
(1)若直線CD經(jīng)過∠BCA的內(nèi)部,且E、F在射線CD上.
①如圖1,若∠BCA=90°,α=90°,則BE ==CF;
②如圖2,若0°<∠BCA<180°,請?zhí)砑右粋€(gè)關(guān)于α與∠BCA關(guān)系的條件 α+∠BCA=180°α+∠BCA=180°,使①中的結(jié)論仍然成立,并說明理由;
(2)如圖3,若直線CD經(jīng)過∠BCA的外部,α=∠BCA,請?zhí)岢鲫P(guān)于EF,BE,AF三條線段數(shù)量關(guān)系的合理猜想,并簡述理由.

【考點(diǎn)】全等三角形的判定與性質(zhì).
【答案】=;α+∠BCA=180°
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:8772引用:13難度:0.3
相似題
-
1.如圖,AD=AB,∠C=∠E,∠CDE=55°,則∠ABE=.
發(fā)布:2025/7/1 13:0:6組卷:643引用:15難度:0.7 -
2.已知△ABC是等腰直角三角形,∠BAC=90°,CD=
BC,DE⊥CE,DE=CE,連接AE,點(diǎn)M是AE的中點(diǎn).12
(1)如圖1,若點(diǎn)D在BC邊上,連接CM,當(dāng)AB=4時(shí),求CM的長;
(2)如圖2,若點(diǎn)D在△ABC的內(nèi)部,連接BD,點(diǎn)N是BD中點(diǎn),連接MN,NE,求證:MN⊥AE;
(3)如圖3,將圖2中的△CDE繞點(diǎn)C逆時(shí)針旋轉(zhuǎn),使∠BCD=30°,連接BD,點(diǎn)N是BD中點(diǎn),連接MN,探索的值并直接寫出結(jié)果.MNAC發(fā)布:2025/7/1 13:0:6組卷:2966引用:4難度:0.1 -
3.如圖所示,在△ABC中,AB=AC,O是△ABC內(nèi)一點(diǎn),且OB=OC,AO的延長線交BC于點(diǎn)D.證明:BD=CD.
發(fā)布:2025/7/1 13:0:6組卷:66引用:2難度:0.5