設函數(shù)f(x)=-x2-2x+a,x<1 -log2(x+1),x≥1
,若函數(shù)f(x)的最大值為-1,則實數(shù)a的取值范圍為( ?。?/h1>
- x 2 - 2 x + a , x < 1 |
- lo g 2 ( x + 1 ) , x ≥ 1 |
【考點】函數(shù)的最值;分段函數(shù)的應用.
【答案】D
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:556引用:3難度:0.5
相似題
-
1.設f(x)=loga(1+x)+loga(3-x)(a>0,a≠1),且f(1)=2.
(1)求a的值及f(x)的定義域.
(2)求f(x)在區(qū)間[0,]上的最大值.32發(fā)布:2024/12/10 12:0:1組卷:635引用:40難度:0.5 -
2.已知a>0,且a≠1,若函數(shù)
有最大值,則關于x的不等式f(x)=aln(x2-2x+3)的解集為.loga(x2-5x+7)>0發(fā)布:2024/12/2 9:0:2組卷:164引用:4難度:0.5 -
3.設函數(shù)y=lnx的反函數(shù)為y=g(x),函數(shù)f(x)=
?g(x)-x2ex3-x2(x∈R)13
(Ⅰ)求函數(shù)y=f(x)的單調(diào)區(qū)間
(Ⅱ)求y=f(x)在[-1,2ln3]上的最小值.發(fā)布:2024/12/6 8:0:2組卷:88引用:1難度:0.3
把好題分享給你的好友吧~~