某校數(shù)學(xué)活動(dòng)小組在一次活動(dòng)中,對(duì)一個(gè)數(shù)學(xué)問(wèn)題作如下探究:
(1)問(wèn)題發(fā)現(xiàn):如圖1,在等邊△ABC中,點(diǎn)P是邊BC上任意一點(diǎn),連接AP,以AP為邊作等邊△APQ,連接CQ,∠ABC與∠ACQ的數(shù)量關(guān)系是 ∠ABC=∠ACQ∠ABC=∠ACQ;
(2)變式探究:如圖2,在等腰△ABC中,AB=BC,點(diǎn)P是邊BC上任意一點(diǎn),以AP為腰作等腰△APQ,使AP=PQ,∠APQ=∠ABC,連接CQ,判斷∠ABC和∠ACQ的數(shù)量關(guān)系,并說(shuō)明理由;
(3)解決問(wèn)題:如圖3,在正方形ADBC中,點(diǎn)P是邊BC上一點(diǎn),以AP為邊作正方形APEF,Q是正方形APEF對(duì)角線的交點(diǎn),連接CQ.若正方形APEF的邊長(zhǎng)為10,CQ=2,求正方形ADBC的邊長(zhǎng).

CQ
=
2
【考點(diǎn)】四邊形綜合題.
【答案】∠ABC=∠ACQ
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:590引用:3難度:0.2
相似題
-
1.(1)如圖1,在四邊形ABCD中,∠B=∠C=90°,點(diǎn)E是邊BC上一點(diǎn),AB=EC,BE=CD,連接AE、DE.判斷△AED的形狀,并說(shuō)明理由;
(2)在平面直角坐標(biāo)系中,已知點(diǎn)A(2,0),點(diǎn)B(5,1),點(diǎn)C在第一象限內(nèi),若△ABC是等腰直角三角形,求點(diǎn)C的坐標(biāo);
(3)如圖2,在平面直角坐標(biāo)系中,已知點(diǎn)A(0,1),點(diǎn)C是x軸上的動(dòng)點(diǎn),線段CA繞著點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)90°至線段CB,連接BO、BA,則BO+BA的最小值是 .發(fā)布:2025/6/8 23:30:1組卷:886引用:3難度:0.3 -
2.如圖,四邊形ABCD中,已知∠BAC=∠BDC=90°,且AB=AC.
(1)求證:∠ABD=∠ACD;
(2)記△ABD的面積為S1,△ACD的面積為S2.
①求證:S1-S2=AD2;12
②過(guò)點(diǎn)B作BC的垂線,過(guò)點(diǎn)A作BC的平行線,兩直線相交于M,延長(zhǎng)BD至P,使得DP=CD,連接MP.當(dāng)MP取得最大值時(shí),求∠CBD的大?。?/h2>發(fā)布:2025/6/8 23:0:1組卷:308引用:4難度:0.1 -
3.如圖,正方形ABCD中,AE=BF.
(1)求證:△BCE≌△CDF;
(2)求證:CE⊥DF;
(3)若CD=6,且DG2+GE2=41,則BE=.發(fā)布:2025/6/8 23:30:1組卷:360引用:3難度:0.6