已知函數f(x)=2x-2-x.
(1)用定義證明f(x)是R上的增函數.
(2)是否存在m,使得對任意的x∈[-1,1],4x+1-8mf(x)+4-x+1+m2-30>0恒成立?若存在,求出m的取值范圍;若不存在,請說明理由.
【考點】函數恒成立問題;由函數的單調性求解函數或參數.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/10/24 6:0:4組卷:37引用:6難度:0.5
相似題
-
1.已知函數f(x)=x2+ax-b(a,b∈R).
(Ⅰ)當b=2a2-3a+1時,解關于x的不等式f(x)≤0;
(Ⅱ)若正數a,b滿足,且對于任意的x∈[1,+∞),f(x)≥0恒成立,求實數a,b的值.a+4b≤3發(fā)布:2024/12/15 8:0:1組卷:37難度:0.5 -
2.歐拉函數φ(n)的函數值等于所有不超過正整數n,且與n互質的正整數的個數,例如:φ(1)=1,φ(2)=1,φ(4)=2.若?n∈N*,使得n?φ(3n)-λ?5n-2≥0成立,則實數λ的最大值為 .
發(fā)布:2024/11/10 9:0:1組卷:25引用:3難度:0.5 -
3.設函數的定義域為D,如果存在正實數k,使對任意的x∈D,都有x+k∈D,且f(x+k)>f(x)恒成立,則稱函數f(x)為D上的“k型增函數”.已知f(x)是定義在R上的奇函數,且當x>0時,f(x)=|x-a|-2a,若f(x)為R上的“2022型增函數”,則實數a的取值范圍是 .
發(fā)布:2024/12/4 7:0:1組卷:79引用:2難度:0.5
把好題分享給你的好友吧~~