已知橢圓C:x24+y23=1.
(Ⅰ)求橢圓C的離心率和長軸長.
(Ⅱ)已知直線y=kx-2與橢圓C有兩個不同的交點A,B,P為x軸上一點.是否存在實數(shù)k,使得△PAB是以點P為直角頂點的等腰直角三角形?若存在,求出k的值及點P的坐標(biāo);若不存在,說明理由.
x
2
4
+
y
2
3
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:220引用:2難度:0.5
相似題
-
1.設(shè)橢圓
+x2a2=1(a>b>0)的右頂點為A,上頂點為B.已知橢圓的離心率為y2b2,|AB|=53.13
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線l:y=kx(k<0)與橢圓交于P,Q兩點,直線l與直線AB交于點M,且點P,M均在第四象限.若△BPM的面積是△BPQ面積的2倍,求k的值.發(fā)布:2024/12/29 12:30:1組卷:4442引用:26難度:0.3 -
2.已知橢圓C:
=1(a>b>0)的一個頂點坐標(biāo)為A(0,-1),離心率為x2a2+y2b2.32
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線y=k(x-1)(k≠0)與橢圓C交于不同的兩點P,Q,線段PQ的中點為M,點B(1,0),求證:點M不在以AB為直徑的圓上.發(fā)布:2024/12/29 12:30:1組卷:362引用:4難度:0.5 -
3.如果橢圓
的弦被點(4,2)平分,則這條弦所在的直線方程是( )x236+y29=1發(fā)布:2024/12/18 3:30:1組卷:456引用:3難度:0.6