1.n個(gè)有次序的實(shí)數(shù)a
1,a
2,…,a
n所組成的有序數(shù)組(a
1,a
2,…,a
n)稱為一個(gè)n維向量,其中a
i(i=1,2,…,n)稱為該向量的第i個(gè)分量.特別地,對(duì)一個(gè)n維向量
,若|a
i|=1,i=1,2…n,稱
為n維信號(hào)向量.設(shè)
,
,
則
和
的內(nèi)積定義為
,且
=0.
(1)直接寫出4個(gè)兩兩垂直的4維信號(hào)向量.
(2)證明:不存在14個(gè)兩兩垂直的14維信號(hào)向量.
(3)已知k個(gè)兩兩垂直的2024維信號(hào)向量x
1,x
2,…,x
k滿足它們的前m個(gè)分量都是相同的,求證:
<45.