已知函數(shù)f(x)=alnx-bx+b,g(x)=exx-a(x>0).
(Ⅰ)若曲線y=f(x)與曲線y=g(x)在它們的交點(1,c)處具有公共切線,求實數(shù)a,b的值;
(Ⅱ)若函數(shù)g(x)無零點,求實數(shù)a的取值范圍;
(Ⅲ)當(dāng)a=b時,函數(shù)F(x)=f(x)+g(x)在x=1處取得極小值,求實數(shù)a的取值范圍.
g
(
x
)
=
e
x
x
-
a
(
x
>
0
)
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:354引用:1難度:0.3
相似題
-
1.已知函數(shù)f(x)=(x-a)lnx(a∈R),它的導(dǎo)函數(shù)為f'(x).
(1)當(dāng)a=1時,求f'(x)的零點;
(2)若函數(shù)f(x)存在極小值點,求a的取值范圍.發(fā)布:2024/12/29 13:0:1組卷:279引用:8難度:0.4 -
2.若函數(shù)
有兩個極值點,則實數(shù)a的取值范圍為( ?。?/h2>f(x)=e2x4-axex發(fā)布:2024/12/29 13:30:1組卷:110引用:3難度:0.5 -
3.定義:設(shè)f'(x)是f(x)的導(dǎo)函數(shù),f″(x)是函數(shù)f'(x)的導(dǎo)數(shù),若方程f″(x)=0有實數(shù)解x0,則稱點(x0,f(x0))為函數(shù)y=f(x)的“拐點”.經(jīng)過探究發(fā)現(xiàn):任何一個三次函數(shù)都有“拐點”且“拐點”就是三次函數(shù)圖像的對稱中心,已知函數(shù)
的對稱中心為(1,1),則下列說法中正確的有( ?。?/h2>f(x)=ax3+bx2+53(ab≠0)發(fā)布:2024/12/29 13:30:1組卷:155引用:6難度:0.5
相關(guān)試卷