試卷征集
加入會員
操作視頻

問題引入:課外興趣小組活動時,老師提出這樣的問題:如圖1,在△ABC中,AB=5,AC=3,求BC邊上的中線的取值范圍.小華在組內(nèi)經(jīng)過合作交流,得到了如下的解決方法:延長AD到E,使得DE=AD,再連接BE,把AB,AC,2AD集中在△ABE中,利用三角形的三邊關(guān)系可得2<AE<8,則1<AD<4.從中他總結(jié)出:解題時,條件中若出現(xiàn)“中線”“中點”等條件,可以考慮將中線加倍延長,構(gòu)造全等三角形,把分散的條件和需求證的結(jié)論集中到同一個三角形中.

(1)請你用小華的方法證明AB+AC>2AD;
(2)由第(1)問方法的啟發(fā),請你證明下面命題:如圖2,在△ABC中,D是BC邊上的一點,AE是△ABD的中線,CD=AB,∠BDA=∠BAD,求證:AC=2AE;
(3)如圖3,在Rt△ABO和Rt△CDO中,∠AOB=∠COD=90°,OA=OB,OC=OD,連接AD,點M為AD中點,連接OM,請你直接寫出
BC
OM
的值.

【考點】相似形綜合題
【答案】(1)見解析;
(2)見解析;
(3)2.
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/27 8:0:9組卷:260引用:4難度:0.5
相似題
  • 1.如圖,在Rt△ABC中,∠ABC=90°.AB=BC.點D是線段AB上的一點,連接CD.過點B作BG⊥CD,分別交CD、CA于點E、F,與過點A且垂直于AB的直線相交于點G,連接DF,給出以下四個結(jié)論:①
    AG
    AB
    =
    AF
    FC
    ;②若點D是AB的中點,則AF=
    2
    3
    AB;③當(dāng)B、C、F、D四點在同一個圓上時,DF=DB;④若
    DB
    AD
    =
    1
    2
    ,則S△ABC=9S△BDF,其中正確的結(jié)論序號是(  )

    發(fā)布:2025/6/24 16:30:1組卷:2781引用:11難度:0.2
  • 2.如圖,矩形ABCD中,AB=20,BC=10,點P為AB邊上一動點,DP交AC于點Q.
    (1)求證:△APQ∽△CDQ;
    (2)P點從A點出發(fā)沿AB邊以每秒1個單位長度的速度向B點移動,移動時間為t秒.
    ①當(dāng)t為何值時,DP⊥AC?
    ②設(shè)S△APQ+S△DCQ=y,寫出y與t之間的函數(shù)解析式,并探究P點運動到第幾秒到第幾秒之間時,y取得最小值.

    發(fā)布:2025/7/1 13:0:6組卷:2096引用:6難度:0.1
  • 3.【探究發(fā)現(xiàn)】如圖1,△ABC是等邊三角形,∠AEF=60°,EF交等邊三角形外角平分線CF所在的直線于點F,當(dāng)點E是BC的中點時,有AE=EF成立;
    【數(shù)學(xué)思考】某數(shù)學(xué)興趣小組在探究AE、EF的關(guān)系時,運用“從特殊到一般”的數(shù)學(xué)思想,通過驗證得出如下結(jié)論:
    當(dāng)點E是直線BC上(B,C除外)任意一點時(其它條件不變),結(jié)論AE=EF仍然成立.
    假如你是該興趣小組中的一員,請你從“點E是線段BC上的任意一點”;“點E是線段BC延長線上的任意一點”;“點E是線段BC反向延長線上的任意一點”三種情況中,任選一種情況,在備用圖1中畫出圖形,并證明AE=EF.
    【拓展應(yīng)用】當(dāng)點E在線段BC的延長線上時,若CE=BC,在備用圖2中畫出圖形,并運用上述結(jié)論求出S△ABC:S△AEF的值.

    發(fā)布:2025/6/24 15:30:2組卷:1872引用:6難度:0.1
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正