已知二項(xiàng)式(2x2-12x)2n的展開(kāi)式的各項(xiàng)系數(shù)和構(gòu)成數(shù)列{an}.?dāng)?shù)列{bn}的首項(xiàng)b1=1,前n項(xiàng)和為Sn(Sn≠0),且當(dāng)n≥2時(shí),有2S2n=2bnSn-bn(n≥2).
(1)求an和Sn;
(2)設(shè)數(shù)列{(-1)nanSn}的前n項(xiàng)和為Tn,若λ(T2n+19)≤19對(duì)任意的正整數(shù)n恒成立,求實(shí)數(shù)λ的取值范圍.
(
2
x
2
-
1
2
x
)
2
n
2
S
2
n
=
2
b
n
S
n
-
b
n
(
n
≥
2
)
{
(
-
1
)
n
a
n
S
n
}
λ
(
T
2
n
+
1
9
)
≤
1
9
【考點(diǎn)】錯(cuò)位相減法.
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/8/26 6:0:10組卷:40引用:3難度:0.4
相似題
-
1.已知數(shù)列{an}是公差不為0的等差數(shù)列,前n項(xiàng)和為Sn,S9=144,a3是a1與a8的等比中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)數(shù)列{bn}滿足+log2bn=0,若cn=anbn,求數(shù)列{cn}前n項(xiàng)和為Tn.an-13發(fā)布:2024/12/29 12:0:2組卷:129引用:2難度:0.5 -
2.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且S5=
S2,a2n=2an+1,n∈N*.254
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=2n-1+1,令cn=an?bn,求數(shù)列{cn}的前n項(xiàng)和Tn.發(fā)布:2024/12/29 6:0:1組卷:215引用:3難度:0.4 -
3.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且S4=4S2,a2n=2an+1(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若,令cn=anbn,求數(shù)列{cn}的前n項(xiàng)和Tn.bn=3n-1發(fā)布:2024/12/29 5:30:3組卷:444引用:17難度:0.6