已知橢圓Ω:x216+y212=1.雙曲線Γ的實(shí)軸頂點(diǎn)就是橢圓Ω的焦點(diǎn),雙曲線Γ的焦距等于橢圓Ω的長(zhǎng)軸長(zhǎng).
(1)求雙曲線Γ的標(biāo)準(zhǔn)方程;
(2)設(shè)直線l經(jīng)過(guò)點(diǎn)E(3,0)與橢圓Ω交于A、B兩點(diǎn),求△OAB的面積的最大值;
(3)設(shè)直線l:y=kx+m(其中k,m為整數(shù))與橢圓Ω交于不同兩點(diǎn)A、B,與雙曲線Γ交于不同兩點(diǎn)C,D,問(wèn)是否存在直線l,使得向量h→AC+h→BD=h→0,若存在,指出這樣的直線有多少條?若不存在,請(qǐng)說(shuō)明理由.
x
2
16
+
y
2
12
=
1
h→
AC
+
h→
BD
=
h→
0
【考點(diǎn)】直線與圓錐曲線的綜合.
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:57引用:1難度:0.3
相似題
-
1.已知兩個(gè)定點(diǎn)坐標(biāo)分別是F1(-3,0),F(xiàn)2(3,0),曲線C上一點(diǎn)任意一點(diǎn)到兩定點(diǎn)的距離之差的絕對(duì)值等于2
.√5
(1)求曲線C的方程;
(2)過(guò)F1(-3,0)引一條傾斜角為45°的直線與曲線C相交于A、B兩點(diǎn),求△ABF2的面積.發(fā)布:2024/12/29 10:30:1組卷:85引用:1難度:0.9 -
2.點(diǎn)P在以F1,F(xiàn)2為焦點(diǎn)的雙曲線
(a>0,b>0)上,已知PF1⊥PF2,|PF1|=2|PF2|,O為坐標(biāo)原點(diǎn).E:x2a2-y2b2=1
(Ⅰ)求雙曲線的離心率e;
(Ⅱ)過(guò)點(diǎn)P作直線分別與雙曲線漸近線相交于P1,P2兩點(diǎn),且,h→OP1?h→OP2=-274,求雙曲線E的方程;2h→PP1+h→PP2=h→0
(Ⅲ)若過(guò)點(diǎn)Q(m,0)(m為非零常數(shù))的直線l與(2)中雙曲線E相交于不同于雙曲線頂點(diǎn)的兩點(diǎn)M、N,且(λ為非零常數(shù)),問(wèn)在x軸上是否存在定點(diǎn)G,使h→MQ=λh→QN?若存在,求出所有這種定點(diǎn)G的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.h→F1F2⊥(h→GM-λh→GN)發(fā)布:2024/12/29 10:0:1組卷:65引用:5難度:0.7 -
3.若過(guò)點(diǎn)(0,-1)的直線l與拋物線y2=2x有且只有一個(gè)交點(diǎn),則這樣的直線有( ?。l.
發(fā)布:2024/12/29 10:30:1組卷:26引用:5難度:0.7