已知曲線C:y=x2上一點P1(1,1),過P1作曲線C的切線交x軸于Q1
點,P2Q1垂直于x軸且交曲線于P2;再過P2作曲線C的切線交x軸于Q2…,依次過Pn
作曲線C的切線x軸于Qn,Pn+1Qn垂直于x軸,得到一系列的點Pn(xn,yn),其中n∈N*.
(1)求Q1的坐標和數(shù)列{xn}的通項公式;
(2)設(shè)△OPn+1Qn,的面積為Sn,Tn為數(shù)列{n?Sn}的前n項和,是否存在實數(shù)M,使得Tn<M對于一切n∈N*恒成立,若存在求出M的最小值,不存在說明理由.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:56引用:1難度:0.5
相似題
-
1.已知一組2n(n∈N*)個數(shù)據(jù):a1,a2,…,a2n,滿足:a1≤a2≤…≤a2n,平均值為M,中位數(shù)為N,方差為s2,則( )
發(fā)布:2024/12/29 7:30:2組卷:54引用:4難度:0.5 -
2.先閱讀參考材料,再解決此問題:
參考材料:求拋物線弧y=x2(0≤x≤2)與x軸及直線x=2圍成的封閉圖形的面積
解:把區(qū)間[0,2]進行n等分,得n-1個分點A(,0)(i=1,2,3,…,n-1),過分點Ai,作x軸的垂線,交拋物線于Bi,并如圖構(gòu)造n-1個矩形,先求出n-1個矩形的面積和Sn-1,再求2inSn-1,即是封閉圖形的面積,又每個矩形的寬為limn→∞,第i個矩形的高為(2n)2,所以第i個矩形的面積為2in?(2n)2;2in
Sn-1=[2n+4?12n2+4?22n2+…+4?32n2]=4?(n-1)2n2[12+22+32+…+(n-1)2]=8n3?8n3n(n-1)(2n-1)6
所以封閉圖形的面積為limn→∞?8n3=n(n-1)(2n-1)683
閱讀以上材料,并解決此問題:已知對任意大于4的正整數(shù)n,不等式+1-12n2+1-22n2+…+1-32n2<an恒成立,則實數(shù)a的取值范圍為.1-(n-1)2n2發(fā)布:2024/12/29 7:0:1組卷:70引用:2難度:0.5 -
3.已知公比為q的正項等比數(shù)列{an},其首項a1>1,前n項和為Sn,前n項積為Tn,且函數(shù)f(x)=x(x+a1)(x+a2)?(x+a9)在點(0,0)處切線斜率為1,則( )
發(fā)布:2024/12/29 10:30:1組卷:30引用:3難度:0.5
把好題分享給你的好友吧~~