如圖,四邊形ABCD的外接圓是以BD為直徑的⊙O.P是⊙O的劣弧BC上的任意一點.連接PA、PC、PD,延長BC至E,使BD2=BC?BE.
(1)試判斷直線DE與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若四邊形ABCD是正方形,連接AC.當(dāng)P與C重合時,或當(dāng)P與B重合時,把PA+PCPD轉(zhuǎn)化為正方形ABCD的有關(guān)線段長的比,可得PA+PCPD=2.當(dāng)P既不與C重合也不與B重合時,PA+PCPD=2是否成立?請證明你的結(jié)論.
PA
+
PC
PD
PA
+
PC
PD
2
PA
+
PC
PD
2
【考點】圓的綜合題.
【答案】(1)DE與⊙O相切,證明詳見解答;
(2)=仍然成立,證明詳見解答.
(2)
PA
+
PC
PD
2
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:1569引用:4難度:0.6
相似題
-
1.問題探究
(1)在△ABC中,BD,CE分別是∠ABC與∠BCA的平分線.
①若∠A=60°,AB=AC,如圖1,試證明BC=CD+BE;
②將①中的條件“AB=AC”去掉,其他條件不變,如圖2,問①中的結(jié)論是否成立?并說明理由.
遷移運(yùn)用
(2)若四邊形ABCD是圓的內(nèi)接四邊形,且∠ACB=2∠ACD,∠CAD=2∠CAB,如圖3,試探究線段AD,BC,AC之間的等量關(guān)系,并證明.發(fā)布:2025/6/14 18:30:4組卷:1848引用:5難度:0.2 -
2.【數(shù)學(xué)概念】
有一條對角線平分一組對角的四邊形叫“對分四邊形”.
【概念理解】
(1)關(guān)于“對分四邊形”,下列說法正確的是 .(填所有正確的序號)
①菱形是“對分四邊形”
②“對分四邊形”至少有兩組鄰邊相等
③“對分四邊形”的對角線互相平分
【問題解決】
(2)如圖①,PA為⊙O的切線,A為切點.在⊙O上是否存在點B、C,使以P、A、B、C為頂點的四邊形是“對分四邊形”?小明的作法:
①以P為圓心,PA長為半徑作弧,與⊙O交于點B;
②連接PO并延長,交⊙O于點C;
③點B、C即為所求.
(3)如圖②,已知線段AB和直線l,請在圖②中利用無刻度的直尺和圓規(guī),在直線l上作出點M、N,使以A、B、M、N為頂點的四邊形是“對分四邊形”.(只要作出一個即可,不寫作法,保留作圖痕跡)
(4)如圖③,⊙O的半徑為5,AB是⊙O的弦,AB=8,點C是⊙O上的動點,若存在四邊形ABCD是“對分四邊形”,且有一條邊所在的直線是⊙O的切線,直接寫出AC的長度.發(fā)布:2025/6/14 20:30:2組卷:977引用:3難度:0.1 -
3.如圖,⊙O為△ABC的外接圓,AC=BC,D為OC與AB的交點,E為線段OC延長線上一點,且∠EAC=∠ABC.
(1)求證:直線AE是⊙O的切線.
(2)若CD=6,AB=16,求⊙O的半徑;
(3)在(2)的基礎(chǔ)上,點F在⊙O上,且=?BC,△ACF的內(nèi)心點G在AB邊上,求BG的長.?BF發(fā)布:2025/6/14 23:0:1組卷:1104引用:7難度:0.1