已知橢圓C:x2a2+y2b2=1(a>b>0)的離心率為22,其左、右焦點分別為F1、F2,點P是坐標平面內(nèi)一點,且|OP|=72,PF1?PF2=34(O為坐標原點).
(1)求橢圓C的方程;
(2)過點S(0,-13)且斜率為k的動直線l交橢圓于A、B兩點,在y軸上是否存在定點M,使以AB為直徑的圓恒過這個點?若存在,求出M的坐標和△MAB面積的最大值;若不存在,說明理由.
C
:
x
2
a
2
+
y
2
b
2
=
1
(
a
>
b
>
0
)
2
2
|
OP
|
=
7
2
,
P
F
1
?
P
F
2
=
3
4
S
(
0
,-
1
3
)
【考點】直線與橢圓的綜合.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/10/19 2:0:2組卷:99引用:4難度:0.1
相似題
-
1.已知橢圓C:
=1(a>b>0)的一個頂點坐標為A(0,-1),離心率為x2a2+y2b2.32
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線y=k(x-1)(k≠0)與橢圓C交于不同的兩點P,Q,線段PQ的中點為M,點B(1,0),求證:點M不在以AB為直徑的圓上.發(fā)布:2024/12/29 12:30:1組卷:362引用:4難度:0.5 -
2.設橢圓
+x2a2=1(a>b>0)的右頂點為A,上頂點為B.已知橢圓的離心率為y2b2,|AB|=53.13
(Ⅰ)求橢圓的方程;
(Ⅱ)設直線l:y=kx(k<0)與橢圓交于P,Q兩點,直線l與直線AB交于點M,且點P,M均在第四象限.若△BPM的面積是△BPQ面積的2倍,求k的值.發(fā)布:2024/12/29 12:30:1組卷:4443引用:26難度:0.3 -
3.如果橢圓
的弦被點(4,2)平分,則這條弦所在的直線方程是( )x236+y29=1發(fā)布:2024/12/18 3:30:1組卷:456引用:3難度:0.6