如圖,已知拋物線y=ax2+bx-4與x軸交于A、B兩點,與y軸交于C點,經(jīng)過A、B、C三點的圓的圓心M(1,m)恰好在此拋物線的對稱軸上,⊙M的半徑為10.
(1)求m的值及拋物線的解析式;
(2)點P是線段AB上的一個動點,過點P作PN∥BC,交AC于點N,連接CP,當△PNC的面積最大時,求點P的坐標;
(3)點D(2,k)在(1)中拋物線上,點E為拋物線上一動點,在x軸上是否存在點F,使以A、D、E、F為頂點的四邊形是平行四邊形,如果存在,直接寫出所有滿足條件的點F的坐標,若不存在,請說明理由.
10
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:458引用:3難度:0.5
相似題
-
1.如圖,直線y=kx+b(b<0)與拋物線y=ax2相交于點A(x1,y1),B(x2,y2)兩點,拋物線y=ax2經(jīng)過點(4,-2)
(1)求出a的值;
(2)若x1?OB-y2?OA=0,求b的值;
(3)將拋物線向右平移一個單位,再向上平移n的單位.若在第一象限的拋物線上存在這樣的不同的兩點M、N,使得M、N關于直線y=x對稱,求n的取值范圍.發(fā)布:2025/6/23 10:30:1組卷:53引用:1難度:0.3 -
2.如圖,拋物線y=
(x-3)2-1與x軸交于A,B兩點(點A在點B的左側(cè)),與y軸交于點C,頂點為D.12
(1)求點A,B,D的坐標;
(2)連接CD,過原點O作OE⊥CD,垂足為H,OE與拋物線的對稱軸交于點E,連接AE,AD,求證:∠AEO=∠ADC;
(3)以(2)中的點E為圓心,1為半徑畫圓,在對稱軸右側(cè)的拋物線上有一動點P,過點P作⊙E的切線,切點為Q,當PQ的長最小時,求點P的坐標,并直接寫出點Q的坐標.發(fā)布:2025/6/23 9:0:1組卷:2875引用:59難度:0.1 -
3.如圖,已知拋物線y=-x2+bx+c與一直線相交于A(-1,0),C(2,3)兩點,與y軸交于點N.其頂點為D.
(1)拋物線及直線AC的函數(shù)關系式;
(2)設點M(3,m),求使MN+MD的值最小時m的值;
(3)若拋物線的對稱軸與直線AC相交于點B,E為直線AC上的任意一點,過點E作EF∥BD交拋物線于點F,以B,D,E,F(xiàn)為頂點的四邊形能否為平行四邊形?若能,求點E的坐標;若不能,請說明理由;
(4)若P是拋物線上位于直線AC上方的一個動點,求△APC的面積的最大值.發(fā)布:2025/6/23 11:30:2組卷:1904引用:25難度:0.1