如圖,拋物線y=x2+bx+c與x軸分別交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,若A(-1,0)且OC=3OA.
(1)求該拋物線的函數(shù)表達(dá)式;
(2)如圖1,點(diǎn)P是第四象限內(nèi)拋物線上的一個(gè)點(diǎn)且位于對(duì)稱軸右側(cè),分別連接BC、AP相交于點(diǎn)G,當(dāng)S△PBGS△ABG=12時(shí),求點(diǎn)P的坐標(biāo);
(3)如圖2,在(2)的條件下,AP交y軸于點(diǎn)M,過M點(diǎn)的直線l與線段AB,AC分別交于E,F(xiàn),當(dāng)直線l繞點(diǎn)M旋轉(zhuǎn)時(shí),mAE+nAF為定值3,請(qǐng)求出m和n的值.
?
S
△
PBG
S
△
ABG
=
1
2
m
AE
+
n
AF
【考點(diǎn)】二次函數(shù)綜合題.
【答案】(1)y=x2-2x-3;
(2)(2,-3);
(3)m=2,n=.
(2)(2,-3);
(3)m=2,n=
10
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/13 8:0:9組卷:621引用:2難度:0.2
相似題
-
1.如圖,四邊形OABC為直角梯形,A(4,0),B(3,4),C(0,4).點(diǎn)M從O出發(fā)以每秒2個(gè)單位長度的速度向A運(yùn)動(dòng);點(diǎn)N從B同時(shí)出發(fā),以每秒1個(gè)單位長度的速度向C運(yùn)動(dòng).其中一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).過點(diǎn)N作NP垂直x軸于點(diǎn)P,連接AC交NP于Q,連接MQ.
(1)點(diǎn)(填M或N)能到達(dá)終點(diǎn);
(2)求△AQM的面積S與運(yùn)動(dòng)時(shí)間t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍,當(dāng)t為何值時(shí),S的值最大;
(3)是否存在點(diǎn)M,使得△AQM為直角三角形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說明理由.發(fā)布:2025/5/28 0:30:1組卷:996引用:77難度:0.1 -
2.已知拋物線y=x2+px+q上有一點(diǎn)M(x0,y0)位于x軸的下方.
(1)求證:拋物線必與x軸交于兩點(diǎn)A(x1,0)、B(x2,0),其中x1<x2;
(2)求證:x1<x0<x2;
(3)當(dāng)點(diǎn)M為(1,-1997)時(shí),求整數(shù)x1、x2.發(fā)布:2025/5/28 2:0:5組卷:254引用:1難度:0.5 -
3.如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A、B兩點(diǎn),與y軸相交于點(diǎn)C.連接AC、BC,A、C兩點(diǎn)的坐標(biāo)分別為A(-3,0)、C(0,
),且當(dāng)x=-4和x=2時(shí)二次函數(shù)的函數(shù)值y相等.3
(1)求實(shí)數(shù)a,b,c的值;
(2)若點(diǎn)M、N同時(shí)從B點(diǎn)出發(fā),均以每秒1個(gè)單位長度的速度分別沿BA、BC邊運(yùn)動(dòng),其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng).當(dāng)運(yùn)動(dòng)時(shí)間為t秒時(shí),連接MN,將△BMN沿MN翻折,B點(diǎn)恰好落在AC邊上的P處,求t的值及點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,二次函數(shù)圖象的對(duì)稱軸上是否存在點(diǎn)Q,使得以B,N,Q為頂點(diǎn)的三角形與△ABC相似?如果存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);如果不存在,請(qǐng)說明理由.發(fā)布:2025/5/28 1:30:2組卷:1106引用:26難度:0.1