已知:AB為⊙O的直徑,弧AD=弧BD,連接弦AC、DC,弦DC交AB于點G.
(1)如圖1,求∠ACD的度數(shù).
(2)如圖2,CE為⊙O的直徑,過點E作EF∥CD交BC于F,求證:AC=BF.
(3)如圖3,在(2)的條件下,若EF=34CD,OF=10,求線段CG的長.

3
4
10
【考點】圓的綜合題.
【答案】(1)45°;
(2)證明見解析部分;
(3).
(2)證明見解析部分;
(3)
15
2
4
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:92引用:2難度:0.1
相似題
-
1.如圖⊙O半徑為r,銳角△ABC內接于⊙O,連AO并延長交BC于D,過點D作DE⊥AC于E.
(1)如圖1,求證:∠DAB=∠CDE;
(2)如圖1,若CD=OA,AB=6,求DE的長;
(3)如圖2,當∠DAC=2∠DAB時,BD=5,DC=6,求r的值;
(4)如圖3,若AE=AB=BD=1,直接寫出AD+DE的值(用含r的代數(shù)式表示).發(fā)布:2025/5/31 2:0:7組卷:428引用:1難度:0.2 -
2.閱讀材料:如圖,△ABC的周長為l,面積為S,內切圓⊙O的半徑為r,探究r與S,l之間的關系.
解:連接OA、OB、OC.
∵S△AOB=AB?r,S△OBC=12BC?r,S△OCA=12CA?r,12
∴S=AB?r+12BC?r+12CA?r=12l?r,12
∴r=2Sl
解決問題:
(1)利用探究的結論,計算邊長分別為5,12,13的三角形內切圓半徑.
(2)如圖,若四邊形ABCD存在內切圓(與各邊都相切的圓),且面積為S,各邊長分別為a,b,c,d,試推導四邊形的內切圓半徑公式.
(3)若一個n邊形(n為不小于3的整數(shù))存在內切圓,且面積為S,各邊長分別為a1,a2,a3,a4,…,an,合理猜想其內切圓半徑公式(不需說明理由).發(fā)布:2025/5/31 13:0:2組卷:90引用:2難度:0.5 -
3.如圖,平面直角坐標系中,矩形ABCD,其中A(1,0)、B(4,0)、C(4,2)、D(1,2),定義如下:若點P關于直線l的對稱點P'在矩形ABCD的邊上,則稱點P為矩形ABCD關于直線l的“關聯(lián)點”,
(1)已知點P1(-1,2)、點P2(-2,1)、點P3(-4,1),點P2(-3,-1)中是矩形ABCD關于y軸的關聯(lián)點的是 ;
(2)⊙O的圓心O(-,1)半徑為72,若⊙O上至少存在一個點是矩形ABCD關于直線x=t的關聯(lián)點,求t的取值范圍;32
(3)⊙O的圓心O(m,1)(m<0)半徑為r,若存在t值使⊙O上恰好存在四個點是矩形ABCD關于直線x=t的關聯(lián)點,寫出r的取值范圍,并寫出當r取最小值時t的取值范圍(用含m的式子表示).發(fā)布:2025/5/31 11:0:1組卷:360引用:1難度:0.2