試卷征集
加入會(huì)員
操作視頻

問(wèn)題提出:
如圖,圖①是一張由三個(gè)邊長(zhǎng)為1的小正方形組成的“L”形紙片,圖②是一張a×b的方格紙(a×b的方格紙指邊長(zhǎng)分別為a,b的矩形,被分成a×b個(gè)邊長(zhǎng)為1的小正方形,其中a≥2,b≥2,且a,b為正整數(shù)).把圖①放置在圖②中,使它恰好蓋住圖②中的三個(gè)小正方形,共有多少種不同的放置方法?
問(wèn)題探究:
為探究規(guī)律,我們采用一般問(wèn)題特殊化的策略,先從最簡(jiǎn)單的情形入手,再逐次遞進(jìn),最后得出一般性的結(jié)論.
探究一:
把圖①放置在2×2的方格紙中,使它恰好蓋住其中的三個(gè)小正方形,共有多少種不同的放置方法?
如圖③,對(duì)于2×2的方格紙,要用圖①蓋住其中的三個(gè)小正方形,顯然有4種不同的放置方法.
探究二:
把圖①放置在3×2的方格紙中,使它恰好蓋住其中的三個(gè)小正方形,共有多少種不同的放置方法?
如圖④,在3×2的方格紙中,共可以找到2個(gè)位置不同的2×2方格,依據(jù)探究一的結(jié)論可知,把圖①放置在3×2的方格紙中,使它恰好蓋住其中的三個(gè)小正方形,共有2×4=8種不同的放置方法.
菁優(yōu)網(wǎng)
(1)探究三:
把圖①放置在a×2的方格紙中,使它恰好蓋住其中的三個(gè)小正方形,共有多少種不同的放置方法?
如圖⑤,在a×2的方格紙中,共可以找到個(gè)位置不同的2×2方格,依據(jù)探究一的結(jié)論可知,把圖①放置在a×2的方格紙中,使它恰好蓋住其中的三個(gè)小正方形,共有
(a-1)
(a-1)
種不同的放置方法.
(2)探究四:
把圖①放置在a×3的方格紙中,使它恰好蓋住其中的三個(gè)小正方形,共有多少種不同的放置方法?
如圖⑥,在a×3的方格紙中,共可以找到個(gè)位置不同的2×2方格,依據(jù)探究一的結(jié)論可知,把圖①放置在a×3的方格紙中,使它恰好蓋住其中的三個(gè)小正方形,共有
(4a-4)
(4a-4)
種不同的放置方法.
(3)問(wèn)題解決:
把圖①放置在a×b的方格紙中,使它恰好蓋住其中的三個(gè)小正方形,共有多少種不同的放置方法?(仿照前面的探究方法,寫(xiě)出解答過(guò)程,不需畫(huà)圖)
(4)問(wèn)題拓展:
如圖,圖⑦是一個(gè)由4個(gè)棱長(zhǎng)為1的小立方體構(gòu)成的幾何體,圖⑧是一個(gè)長(zhǎng)、寬、高分別為a,b,c(a≥2,b≥2,c≥2,且a,b,c是正整數(shù))的長(zhǎng)方體,被分成了a×b×c個(gè)棱長(zhǎng)為1的小立方體.在圖⑧的不同位置共可以找到個(gè)圖⑦這樣的幾何體.

【答案】(a-1);(4a-4)
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/8/24 6:0:10組卷:29引用:1難度:0.5
相似題
  • 菁優(yōu)網(wǎng)1.圓周上放有N枚棋子,如圖所示,B點(diǎn)的一枚棋子緊鄰A點(diǎn)的棋子,小洪首先拿走B點(diǎn)處的1枚棋子,然后順時(shí)針每隔1枚拿走2枚棋子,連續(xù)轉(zhuǎn)了10周,9次越過(guò)A,當(dāng)將要第10次越過(guò)A處棋子取走其它棋子時(shí),小洪發(fā)現(xiàn)圓周上余下20多枚棋子,若N是14的倍數(shù),則圓周上還有多少枚棋子?

    發(fā)布:2024/11/7 8:0:2組卷:3引用:0難度:0.5
  • 菁優(yōu)網(wǎng)2.將楊輝三角中的每一個(gè)數(shù)都換成分?jǐn)?shù),得到一個(gè)如圖所示的分?jǐn)?shù)三角形,稱(chēng)萊布尼茨三角形.若用有序?qū)崝?shù)對(duì)(m,n)表示第m行,從左到右第n個(gè)數(shù),如(4,3)表示分?jǐn)?shù)
    1
    12
    ,那么(8,3)表示的分?jǐn)?shù)是( ?。?/h2>

    發(fā)布:2024/11/5 8:0:2組卷:198引用:1難度:0.5
  • 3.如圖,“科赫曲線”是瑞典數(shù)學(xué)家科赫1904構(gòu)造的圖案(又名“雪花曲線”).其過(guò)程是:第一次操作,將一個(gè)等邊三角形每邊三等分,再以中間一段為邊向外作等邊三角形,然后去掉中間一段,得到邊數(shù)為12的圖②.第二次操作,將圖②中的每條線段三等分,重復(fù)上面的操作,得到邊數(shù)為48的圖③.如此循環(huán)下去,得到一個(gè)周長(zhǎng)無(wú)限的“雪花曲線”.若操作4次后所得“雪花曲線”的邊數(shù)是( ?。?br />菁優(yōu)網(wǎng)

    發(fā)布:2024/11/2 8:0:1組卷:1241引用:5難度:0.3
小程序二維碼
把好題分享給你的好友吧~~
APP開(kāi)發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司 | 應(yīng)用名稱(chēng):菁優(yōu)網(wǎng) | 應(yīng)用版本:4.8.2  |  隱私協(xié)議      第三方SDK     用戶服務(wù)條款廣播電視節(jié)目制作經(jīng)營(yíng)許可證出版物經(jīng)營(yíng)許可證網(wǎng)站地圖本網(wǎng)部分資源來(lái)源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請(qǐng)立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正