在初中學(xué)習(xí)中,我們知道:點(diǎn)到直線的距離是直線外一點(diǎn)和直線上各點(diǎn)連接的所有線段中,最短的線段(即垂線段)的長(zhǎng)度.類比,我們給出點(diǎn)到某一個(gè)圖形的距離的定義:點(diǎn)P與圖形l上各點(diǎn)連接的所有線段中,若線段PA1最短,則線段PA1的長(zhǎng)度稱為點(diǎn)P到圖形l的距離,記為d(P,圖形D).特別地,若點(diǎn)P在圖形上,則點(diǎn)P到圖形的距離為0,即d(P,圖形)=0.
![](https://img.jyeoo.net/quiz/images/svg/202305/596/771a17be.png)
(1)①若點(diǎn)P是⊙O內(nèi)一點(diǎn),⊙O的半徑是5,OP=2,則d(P,⊙O)=33;
②如圖1,在平面直角坐標(biāo)系xOy中,A(4,0),∠AOB=60°,B在x軸上方.若M(0,2),N(-1,0),則d(M,∠AOB)=11;d(N,∠AOB)=11;
(2)在正方形OABC中,點(diǎn)B(4,4),如圖2,若點(diǎn)P在直線y=3x+4上,且d(P,∠AOB)=22=22,求點(diǎn)P的坐標(biāo);
(3)已知點(diǎn)P(m+1,2m-3),記拋物線y=ax2+ax-2a(a為常數(shù))的圖象為l,若d(P,l)的最小值為23405,求a的值.
∠
AOB
)
=
2
2
2
23
40
5
【考點(diǎn)】二次函數(shù)綜合題.
【答案】3;1;1
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:283引用:1難度:0.3
相似題
-
1.如圖,已知拋物線y=ax2+bx-2與x軸的兩個(gè)交點(diǎn)是A(4,0),B(1,0),與y軸的交點(diǎn)是C.
(1)求該拋物線的解析式;
(2)在直線AC上方的該拋物線上是否存在一點(diǎn)D,使得△DCA的面積最大?若存在,求出點(diǎn)D的坐標(biāo)及△DCA面積的最大值;若不存在,請(qǐng)說(shuō)明理由;
(3)設(shè)拋物線的頂點(diǎn)是F,對(duì)稱軸與AC的交點(diǎn)是N,P是在AC上方的該拋物線上一動(dòng)點(diǎn),過(guò)P作PM⊥x軸,交AC于M.若P點(diǎn)的橫坐標(biāo)是m.問(wèn):
①m取何值時(shí),過(guò)點(diǎn)P、M、N、F的平面圖形不是梯形?
②四邊形PMNF是否有可能是等腰梯形?若有可能,請(qǐng)求出此時(shí)m的值;若不可能,請(qǐng)說(shuō)明理由.發(fā)布:2025/1/2 8:0:1組卷:82引用:1難度:0.5 -
2.如圖,我們把一個(gè)半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”.已知點(diǎn)A、B、C、D分別是“果圓”與坐標(biāo)軸的交點(diǎn),拋物線的解析式為y=x2-2x-3,AB為半圓的直徑,則這個(gè)“果圓”被y軸截得的弦CD的長(zhǎng)為.
發(fā)布:2024/12/23 17:30:9組卷:3648引用:37難度:0.4 -
3.如圖,將矩形OABC置于平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(0,4),點(diǎn)C在x軸上,點(diǎn)D(3
,1)在BC上,將矩形OABC沿AD折疊壓平,使點(diǎn)B落在坐標(biāo)平面內(nèi),設(shè)點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)E.若拋物線y=ax2-45ax+10(a≠0且a為常數(shù))的頂點(diǎn)落在△ADE的內(nèi)部,則a的取值范圍是( )5A. 25<a<1320B. 25<a<1120C. 1120<a<35D. 35<a<1320發(fā)布:2024/12/26 1:30:3組卷:2665引用:7難度:0.7