已知拋物線y=ax2+bx-2(a≠0)經過點A(1,0)、B(2,0),與y軸交于點C.
(1)求拋物線的表達式;
(2)將拋物線向左平移m個單位(m>2),平移后點A、B、C的對應點分別記作A1、B1、C1,過點C1作C1D⊥x軸,垂足為點D,點E在y軸負半軸上,使得以O、E、B1為頂點的三角形與△A1C1D相似,
①求點E的坐標;(用含m的代數式表示)
②如果平移后的拋物線上存在點F,使得四邊形A1FEB1為平行四邊形,求m的值.
【考點】二次函數綜合題.
【答案】(1)y=x2+x-2;
(2)①(0,1-m)或(0,4-2m);
②m=或m=5.
(2)①(0,1-
1
2
②m=
7
2
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:607引用:2難度:0.3
相似題
-
1.在平面直角坐標系xOy中,拋物線L:y=ax2-2ax-3a(a>0)與x軸交于A,B兩點(點A在點B的左側),直線y=ax+1與拋物線交于C,D兩點(點D在第一象限).
(1)如圖,當點C與點A重合時,求拋物線的函數表達式;
(2)在(1)的條件下,連接BD,點E在拋物線上,若∠DAE=∠ADB,求出點E的坐標;
(3)將拋物線L向上平移1個單位得到拋物線L1,拋物線L1的頂點為P,直線y=ax+1與拋物線L1交于M,N兩點,連接MP,NP,若∠MPN=90°,求a的值.發(fā)布:2025/6/4 9:0:1組卷:755引用:2難度:0.3 -
2.如圖,在平面直角坐標系xOy中,拋物線y=ax2+
x+c與x軸交于點A(-3,0),與y軸交于點C(0,-2).43
(1)求拋物線的解析式;
(2)如圖1,連接AC,點D為線段AC下方拋物線上一動點,過點D作DE∥y軸交線段AC于E點,連接EO,記△ADC的面積為S1,△AEO的面積為S2,求S1-S2的最大值及此時點D的坐標;
(3)如圖2,在(2)問的條件下,將拋物線沿射線CB方向平移個單位長度得到新拋物線,動點M在原拋物線的對稱軸上,點N為新拋物線上一點,直接寫出所有使得以點A、D、M、N為頂點的四邊形是平行四邊形的點N的坐標,并把求其中一個點N的坐標的過程寫出來.352發(fā)布:2025/6/4 0:0:8組卷:299引用:2難度:0.4 -
3.如圖,在平面直角坐標系中,直線y=-x+3與拋物線y=-x2+bx+c交于A、B兩點,點A在x軸上,點B在y軸上.點P是拋物線上任意一點,過點P作PQ⊥y軸,交直線AB于點Q,連接BP,設點P的橫坐標為m,△PQB的邊PQ與PQ邊上的高之差為d.
(1)求此拋物線解析式.
(2)求點Q的橫坐標(用含m的代數式表示);
(3)∠BQP為銳角.
①求d關于m的函數關系式;
②當△AOB的頂點到PQ的最短距離等于d時,直接寫出m的值.發(fā)布:2025/6/3 21:0:1組卷:205難度:0.1