在Rt△ABC中,∠ACB=90°,AC=12.點(diǎn)D在直線CB上,以CA,CD為邊作矩形ACDE,直線AB與直線CE,DE的交點(diǎn)分別為F,G.
(1)如圖,點(diǎn)D在線段CB上,四邊形ACDE是正方形.
①若點(diǎn)G為DE的中點(diǎn),求FG的長.
②若DG=GF,求BC的長.
(2)已知BC=9,是否存在點(diǎn)D,使得△DFG是等腰三角形?若存在,求該三角形的腰長;若不存在,試說明理由.
【考點(diǎn)】四邊形綜合題.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/8/15 3:0:1組卷:3118引用:4難度:0.1
相似題
-
1.在線上教學(xué)中,教師和學(xué)生都學(xué)習(xí)到了新知識,掌握了許多新技能.例如教材八年級下冊的數(shù)學(xué)活動(dòng)一折紙,就引起了許多同學(xué)的興趣.在經(jīng)歷圖形變換的過程中,進(jìn)一步發(fā)展了同學(xué)們的空間觀念,積累了數(shù)學(xué)活動(dòng)經(jīng)驗(yàn).
實(shí)踐發(fā)現(xiàn):
對折矩形紙片ABCD,使AD與BC重合,得到折痕EF,把紙片展平;再一次折疊紙片,使點(diǎn)A落在EF上的點(diǎn)N處,并使折痕經(jīng)過點(diǎn)B,得到折痕BM,把紙片展平,連接AN,如圖①.
(1)①計(jì)算出∠MNE=°;
②繼續(xù)折疊紙片,使點(diǎn)A落在BC邊上的點(diǎn)H處,并使折痕經(jīng)過點(diǎn)B,得到折痕BG,把紙片展平,如圖②,則∠GBN=°;
拓展延伸:
(2)如圖③,折疊矩形紙片ABCD,使點(diǎn)A落在BC邊上的點(diǎn)A'處,并且折痕交BC邊于點(diǎn)T,交AD邊于點(diǎn)S,把紙片展平,連接AA'交ST于點(diǎn)O,連接AT.求證:四邊形SATA'是菱形;
解決問題:
(3)如圖④,矩形紙片ABCD中,AB=10,AD=26,折疊紙片,使點(diǎn)A落在BC邊上的點(diǎn)A'處,并且折痕交AB邊于點(diǎn)T,交AD邊于點(diǎn)S,把紙片展平.同學(xué)們小組討論后,得出線段AT的長度有4,5,7,9.
請寫出以上4個(gè)數(shù)值中你認(rèn)為正確的數(shù)值 .發(fā)布:2025/6/7 2:30:1組卷:127引用:1難度:0.3 -
2.已知正方形ABCD的邊長為4,△BEF為等邊三角形,點(diǎn)E在AB邊上,點(diǎn)F在AB邊的左側(cè).
(1)如圖1,若D,E,F(xiàn)在同一直線上,求BF的長;
(2)如圖2,連接AF,CE,BD,并延長CE交AF于點(diǎn)H,若CH⊥AF,求證:AE+2FH=BD;2
(3)如圖3,將△ABF沿AB翻折得到△ABP,點(diǎn)Q為AP的中點(diǎn),連接CQ,若點(diǎn)E在射線BA上運(yùn)動(dòng)時(shí),請直接寫出線段CQ的最小值.發(fā)布:2025/6/7 2:0:5組卷:1043引用:10難度:0.2 -
3.如圖1,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB,試判斷BC和AC、AD之間的數(shù)量關(guān)系.
[探究]如圖2,在BC上取CA'=CA,連接DA',得到一對全等三角形,從而將問題解決.
請回答下列問題:
(1)在圖2中,得到的哪對全等三角形?請證明;
(2)如圖2.試猜想BC和AC、AD之間的數(shù)量關(guān)系并證明;
(3)如圖3,在四邊形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9,求AB的長.發(fā)布:2025/6/7 3:0:1組卷:219引用:1難度:0.4