歐拉恒等式eiπ+1=0(i為虛數(shù)單位,e為自然對(duì)數(shù)的底數(shù))被稱(chēng)為數(shù)學(xué)中最奇妙的公式.它是復(fù)分析中歐拉公式eix=cosx+isinx的特例:當(dāng)自變量x=π時(shí),eiπ=cosπ+isinπ=-1,得eiπ+1=0.根據(jù)歐拉公式,復(fù)數(shù)z=ei5π4在復(fù)平面上所對(duì)應(yīng)的點(diǎn)在第( ?。┫笙蓿?/h1>
e
i
5
π
4
【考點(diǎn)】復(fù)數(shù)歐拉公式.
【答案】C
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/5/27 14:0:0組卷:48引用:4難度:0.7
相似題
-
1.歐拉是18世紀(jì)最偉大的數(shù)學(xué)家之一,在很多領(lǐng)域中都有杰出的貢獻(xiàn).由《物理世界》發(fā)起的一項(xiàng)調(diào)查表明,人們把歐拉恒等式“eiπ+1=0”與麥克斯韋方程組并稱(chēng)為“史上最偉大的公式”.其中,歐拉恒等式是歐拉公式:eiθ=cosθ+isinθ的一種特殊情況.根據(jù)歐拉公式,
=( )|eπ3i+e5π6i|發(fā)布:2024/9/8 9:0:9組卷:21引用:2難度:0.7 -
2.歐拉公式eiθ=cosθ+isinθ由瑞士數(shù)學(xué)家歐拉發(fā)現(xiàn),其將自然對(duì)數(shù)的底數(shù)e,虛數(shù)單位i與三角函數(shù)cosθ,sinθ聯(lián)系在一起,被譽(yù)為“數(shù)學(xué)的天橋”,若復(fù)數(shù)
,則z的虛部為( ?。?/h2>z=eiπ2發(fā)布:2024/7/24 8:0:9組卷:38引用:7難度:0.8 -
3.歐拉是十八世紀(jì)偉大的數(shù)學(xué)家,他巧妙地把自然對(duì)數(shù)的底數(shù)e、虛數(shù)單位i、三角函數(shù)cosθ和sinθ聯(lián)系在一起,得到公式eiθ=cosθ+isinθ,這個(gè)公式被譽(yù)為“數(shù)學(xué)的天橋”,若θ∈[0,2π),則θ稱(chēng)為復(fù)數(shù)eiθ的輻角主值.根據(jù)該公式,可得e3iπ的輻角主值為 .
發(fā)布:2024/7/18 8:0:9組卷:4引用:2難度:0.8
把好題分享給你的好友吧~~