對(duì)于平面直角坐標(biāo)系xOy中的不同兩點(diǎn)A(x1,y1),B(x2,y2),給出如下定義:若x1x2=1,y1y2=1,則稱(chēng)點(diǎn)A,B互為“倒數(shù)點(diǎn)”.例如:點(diǎn)A(12,1),B(2,1)互為“倒數(shù)點(diǎn)”.
(1)已知點(diǎn)A的坐標(biāo)為(1,3),則點(diǎn)A的“倒數(shù)點(diǎn)”點(diǎn)B的坐標(biāo)為 (1,13)(1,13);將線段AB向右平移2個(gè)單位得到線段A'B',則線段A'B'上 不存在不存在(填“存在”或“不存在”)“倒數(shù)點(diǎn)”.
(2)如圖,在正方形CDEF中,點(diǎn)C坐標(biāo)為 (12,12),點(diǎn)D坐標(biāo)為 (32,12),請(qǐng)判斷該正方形的邊上是否存在“倒數(shù)點(diǎn)”,并說(shuō)明理由.?
1
2
1
3
1
3
(
1
2
,
1
2
)
(
3
2
,
1
2
)
【考點(diǎn)】正方形的性質(zhì);坐標(biāo)與圖形變化-平移.
【答案】(1,);不存在
1
3
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/6/4 12:30:1組卷:116引用:1難度:0.4
相似題
-
1.如圖1,已知正方形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,E是AC上一點(diǎn),連接EB,過(guò)點(diǎn)A作AM⊥BE,垂足為M,AM交BD于點(diǎn)F.
(1)求證:OE=OF;
(2)如圖2,若點(diǎn)E在AC的延長(zhǎng)線上,AM⊥BE于點(diǎn)M,交DB的延長(zhǎng)線于點(diǎn)F,其它條件不變,則結(jié)論“OE=OF”還成立嗎?如果成立,請(qǐng)給出證明;如果不成立,請(qǐng)說(shuō)明理由.發(fā)布:2025/6/6 6:30:1組卷:2247引用:50難度:0.3 -
2.如圖,正方形ABCO和正方形DEFO的頂點(diǎn)A、E、O在同一條直線l上,且EF=
,AB=3,點(diǎn)M、N分別是線段BD和AB的中點(diǎn),則MN的長(zhǎng)為( ?。?/h2>2發(fā)布:2025/6/6 7:0:2組卷:869引用:6難度:0.6 -
3.如圖,在邊長(zhǎng)為6的正方形ABCD中,E是邊CD的中點(diǎn),F(xiàn)在BC邊上,且∠EAF=45°,連接EF,則BF的長(zhǎng)為( ?。?/h2>
發(fā)布:2025/6/6 5:0:1組卷:5519引用:10難度:0.3