函數(shù)f(x)=1memx-12x2,f′(x)是f(x)的導(dǎo)函數(shù).
(1)若m=1,x∈R,證明:f(x)+f(-x)≥2;
(2)若m>1,且對(duì)任意x∈(e,+∞),mx(mx-6)+2f′(x)lnx≥lnx-6恒成立,求實(shí)數(shù)m的取值范圍.
f
(
x
)
=
1
m
e
mx
-
1
2
x
2
mx
(
mx
-
6
)
+
2
f
′
(
x
)
lnx
≥
lnx
-
6
【考點(diǎn)】利用導(dǎo)數(shù)研究函數(shù)的最值.
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:106引用:4難度:0.2
相似題
-
1.已知函數(shù)
,若關(guān)于x的不等式f(x)=ln2+x2-x+1對(duì)任意x∈(0,2)恒成立,則實(shí)數(shù)k的取值范圍( ?。?/h2>f(kex)+f(-12x)>2發(fā)布:2025/1/5 18:30:5組卷:295引用:2難度:0.4 -
2.已知函數(shù)f(x)=
.ex-ax21+x
(1)若a=0,討論f(x)的單調(diào)性.
(2)若f(x)有三個(gè)極值點(diǎn)x1,x2,x3.
①求a的取值范圍;
②求證:x1+x2+x3>-2.發(fā)布:2024/12/29 13:0:1組卷:183引用:2難度:0.1 -
3.已知函數(shù)f(x)=ax3+x2+bx(a,b∈R)的圖象在x=-1處的切線斜率為-1,且x=-2時(shí),y=f(x)有極值.
(1)求f(x)的解析式;
(2)求f(x)在[-3,2]上的最大值和最小值.發(fā)布:2024/12/29 12:30:1組卷:42引用:3難度:0.5
把好題分享給你的好友吧~~