新定義:我們把兩個面積相等但不全等的三角形叫做偏等積三角形.
初步嘗試:
(1)如圖1,已知等腰直角△ABC,∠ACB=90°,AC=BC=5,P為AC上一點,當AP=5252時,△ABP與△CBP為偏等積三角形;
理解運用:
(2)如圖2,△ABD與△ACD為偏等積三角形,若AB=2,AC=5,且線段AD的長度為正整數(shù),過點C作CE∥AB,交AD的延長線于點E,求AE的長;
綜合應用:
(3)如圖3,已知△ACD為直角三角形,∠ADC=90°,分別以AC,AD為邊向外作正方形ACFB和正方形ADGE,連結(jié)BE,求證:△ACD與△ABE為偏等積三角形.
5
2
5
2
【考點】四邊形綜合題.
【答案】
5
2
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:197引用:1難度:0.4
相似題
-
1.如圖,點P是正方形ABCD內(nèi)的一點,連接CP,將線段CP繞點C順時針旋轉(zhuǎn)90°,得到線段CQ,連接BP,DQ.
(1)如圖a,求證:△BCP≌△DCQ;
(2)如圖,延長BP交直線DQ于點E.
①如圖b,求證:BE⊥DQ;
②如圖c,若△BCP為等邊三角形,判斷△DEP的形狀,并說明理由.發(fā)布:2024/12/23 18:0:1組卷:2030引用:13難度:0.1 -
2.如圖,∠BOD=45°,BO=DO,點A在OB上,四邊形ABCD是矩形,連接AC,BD交于點E,連接OE交AD于點F.下列4個判斷:①OE⊥BD;②∠ADB=30°;③DF=
AF;④若點G是線段OF的中點,則△AEG為等腰直角三角形,其中,判斷正確的是 .(填序號)2發(fā)布:2024/12/23 18:30:1組卷:1464引用:7難度:0.3 -
3.四邊形ABCD是矩形,點E是射線BC上一點,連接AC,DE.
(1)如圖1,點E在邊BC的延長線上,BE=AC,若∠ACB=40°,求∠E的度數(shù);
(2)如圖2,點E在邊BC的延長線上,BE=AC,若M是DE的中點,連接AM,CM,求證:AM⊥MC;
(3)如圖3,點E在邊BC上,射線AE交射線DC于點F,∠AED=2∠AEB,AF=4,AB=4,則CE=.(直接寫出結(jié)果)5發(fā)布:2024/12/23 18:30:1組卷:1404引用:10難度:0.4
把好題分享給你的好友吧~~