已知雙曲線C:x2a2-y2b2=1(a>0,b>0)的離心率為2,F為雙曲線的右焦點,直線l過F與雙曲線的右支交于P,Q兩點,且當l垂直于x軸時,PQ=6;
(1)求雙曲線的方程;
(2)過點F且垂直于l的直線l′與雙曲線交于M,N兩點,求MP?NQ+MQ?NP的取值范圍.
x
2
a
2
y
2
b
2
MP
NQ
MQ
NP
【考點】雙曲線與平面向量.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:314難度:0.2
相似題
-
1.雙曲線Γ:
的一條漸近線與圓:x2+y2=16交于第一象限的一點M,記雙曲線Γ的右焦點為F,左頂點為A,則x24-y212=1的值為( ?。?/h2>MA?MF發(fā)布:2024/12/18 4:30:1組卷:70引用:4難度:0.7 -
2.F1、F2是雙曲線
的左、右焦點,點M為雙曲線E右支上一點,點N在x軸上,滿足∠F1MN=∠F2MN=60°,若E:x2a2-y2b2=1(a,b>0),則雙曲線E的離心率為( ?。?/h2>3MF1+5MF2=λMN(λ∈R)發(fā)布:2024/12/20 13:30:1組卷:252難度:0.5 -
3.已知雙曲線
的左、右焦點分別是F1,F2,雙曲線C上有兩點A,B滿足C:x2a2-y2b2=1(a>0,b>0),且OA+OB=0,若四邊形F1AF2B的周長l與面積S滿足∠F1AF2=2π3,則雙曲線C的離心率為( ?。?/h2>3l2=80S發(fā)布:2024/12/10 1:0:1組卷:175難度:0.5