在△ABC中,AB=AC,點D是直線BC上一點,連接AD,以AD為邊向右作△ADE,使得AD=AE,∠DAE=∠BAC,連接CE.

(1)①如圖1,求證:△ABD≌△ACE;
②當點D在BC邊上時,請直接寫出△ABC,△ACD,△ACE的面積(S△ABC,S△ACD,S△ACE)所滿足的關系:S△ABC=S△ACE+S△ACDS△ABC=S△ACE+S△ACD.
(2)當點D在BC的延長線上時,試探究△ABC,△ACD,△ACE的面積(S△ABC,S△ACD,S△ACE)所滿足的關系,并說明理由.
【考點】三角形綜合題.
【答案】S△ABC=S△ACE+S△ACD
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/9/5 7:0:9組卷:27引用:2難度:0.3
相似題
-
1.定義:由一個三角形的三條中線圍成的三角形稱為原三角形的中線三角形.
問題:設中線三角形的面積為S1,原三角形的面積為S2.求的值.S1S2
特例探索:
(1)正三角形的邊長為2,則中線長為 ,所以=.S1S2
(2)如圖1,每個小正方形邊長均為1,點A,B,C,D,E,F(xiàn),G均在網(wǎng)格點上.
①△CFG △ABC的中線三角形.(填“是”或“不是”)
②S△ABC=,S△CFG=,所以=.S1S2
一般情形:
如圖2,△ABC的三條中線分別是AD,BE,CF,將AD平移至CG,連結FG.
(3)求證:△CFG是△ABC的中線三角形;
(4)猜想的值,并說明理由.S1S2發(fā)布:2025/5/22 7:30:2組卷:144引用:1難度:0.1 -
2.在△ABC中,∠ACB=90°,AC=BC,點D在△ABC內部,且滿足∠ACD-∠BCD=2∠DAB,若△BCD的面積為13,則CD=.
發(fā)布:2025/5/22 10:0:1組卷:498引用:3難度:0.3 -
3.【問題提出】
如圖(1),在△ABC和△DEC中,∠ACB=∠DCE=90°,BC=AC,EC=DC,點E在△ABC內部,直線AD與BE交于點F.線段AF,BF,CF之間存在怎樣的數(shù)量關系?
【問題探究】
(1)如圖(2),當點D,F(xiàn)重合時,
①AF與BE的數(shù)量關系是 .
②=.CFBF-AF
(2)如圖(1),當點D,F(xiàn)不重合時,求的值.CFBF-AF
(3)【問題拓展】
如圖(3),在△ABC和△DEC中,∠ACB=∠DCE=90°,BC=kAC,EC=kDC(k是常數(shù)),點E在△ABC內部,直線AD與BE交于點F,求出線段AF,BF,CF之間的數(shù)量關系(用一個含有k的等式表示).發(fā)布:2025/5/22 8:0:2組卷:447引用:2難度:0.2