2024年廣東省深圳市福田外國語教育集團中考數學二調試卷
發(fā)布:2025/6/29 1:0:4
一、選擇題(本題共10小題,每小題3分,共30分。)
-
1.一組數據:-2,1,1,0,2,1,則這組數據的眾數是( ?。?/h2>
組卷:107引用:53難度:0.9 -
2.如圖,已知平行線a,b,一個直角三角板的直角頂點在直線a上,另一個頂點在直線b上,若∠1=70°,則∠2的大小為( ?。?/h2>
組卷:1678難度:0.7 -
3.如圖,在等腰△ABC中,AB=AC=2
,BC=8,按下列步驟作圖:5
①以點A為圓心,適當的長度為半徑作弧,分別交AB,AC于點E,F,再分別以點E,F為圓心,大于EF的長為半徑作弧相交于點H,作射線AH;12
②分別以點A,B為圓心,大于AB的長為半徑作弧相交于點M,N,作直線MN,交射線AH于點O;12
③以點O為圓心,線段OA長為半徑作圓.
則⊙O的半徑為( ?。?/h2>組卷:1731難度:0.5 -
4.在△ABC中,∠BAC=90°,則下列結論成立的是( ?。?/h2>
組卷:96引用:2難度:0.7 -
5.如圖,萬達廣場主樓樓頂立有廣告牌DE,小輝準備利用所學的三角函數知識估測該主樓的高度.由于場地有限,不便測量,所以小輝沿坡度i=1:0.75的斜坡從看臺前的B處步行50米到達C處,測得廣告牌底部D的仰角為45°,廣告牌頂部E的仰角為53°(小輝的身高忽略不計),已知廣告牌DE=15米,則該主樓AD的高度約為( ?。ńY果精確到整數,參考數據:sin53°≈0.8,cos53°≈0.6,tan53°≈1.3)
組卷:853難度:0.5 -
6.化簡(-
)2的結果是( ?。?/h2>3組卷:332引用:5難度:0.9 -
7.在實數
,43,π,2,3,2.12112111211112…中,無理數有( )9組卷:1引用:1難度:0.9 -
8.據測算,如果全國每年減少10%的過度包裝紙用量,那么可減排二氧化碳3120000噸,把數3120000用科學記數法表示為( )
組卷:377引用:17難度:0.9 -
9.民族圖案是數學文化中的一塊瑰寶.下列圖案中,既不是中心對稱圖形也不是軸對稱圖形的是( ?。?/h2>
組卷:519引用:104難度:0.9 -
10.甲做320個零件與乙做400個零件所用的時間相同,已知兩人每天共做90個零件,若設甲每天做x個零件,則可列方程( ?。?/h2>
組卷:154難度:0.7
二、填空題(本題共5小題,每小題3分,共15分)
-
11.分解因式:2a2-8=.
組卷:3090難度:0.7 -
12.如圖,在Rt△ABC中,∠C=90°,AB的垂直平分線分別交AB、AC于點D、E,BE=8,⊙O為△BCE的外接圓,過點E作⊙O的切線EF交AB于點F,則下列結論正確的是 .(寫出所有正確結論的序號)
①AE=BC;
②∠AED=∠CBD;
③若∠DBE=40°,則的長為?DE;8π9
④=DFEF;EFBF
⑤若EF=6,則CE=2.24.組卷:1152引用:2難度:0.5 -
13.如圖所示四個二次函數的圖象中,分別對應的是①y=ax2;②y=bx2;③y=cx2;④y=dx2.則a、b、c、d的大小關系為 .
組卷:7154難度:0.7 -
14.因疫情原因,杭州亞運會定于2023年9月23日至10月8日舉行,名稱仍為杭州2022年第19屆亞運會.蓮蓮從網上購買杭州2022年第19屆亞運會吉祥物(如圖)一件,則物流配送的恰好是“蓮蓮”的概率為 .
組卷:34引用:4難度:0.7 -
15.如圖,在平面直角坐標系中,O為坐標原點,OC在x軸正半軸上,四邊形OABC為平行四邊形,反比例函數y=
的圖象經過點A與邊BC相交于點D,若S△ABC=15,CD=2BD,則k=.kx組卷:2585引用:4難度:0.1
三、解答題(本題共7小題,共55分)
-
16.(1)已知:x=2sin60°,先化簡
+x2-2x+1x2-1,再求它的值.1x+1
(2)已知m和n是方程3x2-8x+4=0的兩根,求+1m.1n組卷:256引用:52難度:0.7 -
17.如圖,AB是⊙O的直徑,點D在直徑AB上(D與A,B不重合),CD⊥AB,且CD=AB,連接CB,與⊙O交于點F,在CD上取一點E,使EF=EC.
(1)求證:EF是⊙O的切線;
(2)若D是OA的中點,AB=4,求CF的長.組卷:6801引用:20難度:0.5 -
18.已知:如圖所示,拋物線y=ax2-2ax-3a的圖象與x軸交于A、B兩點,與y軸交于點C,且OC=3OA.
(1)求此拋物線解析式;
(2)在點P為拋物線上一動點,若△ACP的面積是6,求點P的坐標;
(3)直線y=kx+2交拋物線于E、F兩點(E點在F點左邊),使△CEF被y軸分成的兩部分面積差為5,求k的值.組卷:190難度:0.3 -
19.如圖1,在矩形ABCD中,E為CD的中點,將△BCE沿BE折疊得到△BFE,點C的對應點是F,連接DF,CF.
(1)求證:∠CFD=90°;
(2)如圖2,過點F作FH∥DC,交BE于點H,連接CH,求證:四邊形CEFH是菱形;
(3)如圖3,若BF=CF,求證:點A,E,F在同一條直線上.?
組卷:82引用:4難度:0.2 -
20.為了參加學校舉辦的“新城杯”足球聯賽,新城中學七(1)班學生去商場購買了A品牌足球1個、B品牌足球2個,共花費400元,七(2)班學生購買了A品牌足球3個、B品牌足球1個,共花費450元.
(1)求購買一個A種品牌、一個B種品牌的足球各需多少元?
(2)為了進一步發(fā)展“校園足球”,學校準備再次購進A、B兩種品牌的足球,學校提供專項經費850元全部用于購買這兩種品牌的足球,學校這次最多能購買多少個足球?組卷:734引用:2難度:0.7 -
21.為了解某種電動汽車的性能,對這種電動汽車進行了抽檢,將一次充電后行駛的里程數分為A,B,C,D四個等級,其中相應等級的里程依次為200千米,210千米,220千米,230千米,獲得如下不完整的統(tǒng)計圖.
根據以上信息,解答下列問題:
(1)問這次被抽檢的電動汽車共有幾輛?并補全條形統(tǒng)計圖;
(2)估計這種電動汽車一次充電后行駛的平均里程數為多少千米?組卷:92引用:6難度:0.3 -
22.計算:
sin30°?cos45°-tan230°.2組卷:35引用:1難度:0.6