2021-2022學年湖北省孝感市漢川市城關中學九年級(上)第三次段考數學試卷
發(fā)布:2025/7/18 6:0:9
一、選擇題(本大題共8小題,每小題3分,共24分)
-
1.將拋物線y=-5x2+1向左平移1個單位長度,再向下平移2個單位長度,所得到的拋物線為( ?。?/h2>
組卷:4964引用:73難度:0.9 -
2.一條排水管的截面如圖所示,已知排水管的截面圓半徑OB=5,截面圓圓心O到水面的距離OC是3,則水面寬AB是( ?。?/h2>
組卷:961引用:8難度:0.7 -
3.用配方法解一元二次方程2x2-3x-1=0,配方正確的是( ?。?/h2>
組卷:680引用:10難度:0.7 -
4.下列圖案既是中心對稱圖形,又是軸對稱圖形的是( ?。?/h2>
組卷:63引用:37難度:0.9 -
5.關于x的方程x2+bx+c=0的兩根為1和-2,則b,c的值分別為( ?。?/h2>
組卷:552引用:3難度:0.7 -
6.下列一元二次方程中,沒有實數根的是( ?。?/h2>
組卷:1404難度:0.9 -
7.如圖,將Rt△ABC繞點A按順時針旋轉一定角度得到Rt△ADE,點B的對應點D恰好落在BC邊上.若AC=
,∠B=60°,則CD的長為( )3組卷:1636難度:0.7 -
8.已知:如圖1,點G是BC的中點,點H在AF上,動點P以每秒2cm的速度沿圖1的邊線運動,運動路徑為:G→C→D→E→F→H,相應的△ABP的面積y(cm2)關于運動時間t(s)的函數圖象如圖2,若AB=6cm,則下列四個結論中正確的個數有( ?。?br />
①圖1中的BC長是8cm,②圖2中的M點表示第4秒時y的值為24cm2,
③圖1中的CD長是4cm,④圖2中的N點表示第12秒時y的值為18cm2.組卷:1149難度:0.5
二.填空題(本大題共8小題,每小題3分,共24分)
-
9.如圖,正方形DEFG的邊EF在△ABC的邊BC上,頂點D、G分別在邊AB、AC上.已知△ABC的邊BC=16cm,高AH為10cm,則正方形DEFG的邊長為cm.
組卷:514引用:4難度:0.5 -
10.某小區(qū)2016年綠化面積為2000平方米,計劃2018年綠化面積要達到2880平方米.如果每年綠化面積的增長率相同,那么這個增長率是
組卷:1357引用:92難度:0.7 -
11.如圖是一座截面圖為拋物線的拱形橋,當拱頂離水面2米高時,水面l為4米,則當水面下降2米時,水面寬度增加米.
組卷:837難度:0.6 -
12.已知二次函數y=x2+3x+m(m為常數)的圖象與x軸有兩個交點,其中一個交點為(-1,0),則另一個交點是 .
組卷:225引用:4難度:0.5 -
13.關于x的一元二次方程x2+2x-k=0有兩個不相等的實數根,則k的取值范圍是.
組卷:1467引用:25難度:0.7 -
14.如圖,將正六邊形ABCDEF放在直角坐標系中,中心與坐標原點重合,若A點的坐標為(-1,0),則點C的坐標為.
組卷:3152引用:52難度:0.5 -
15.直角三角形的兩條直角邊分別是5和12,則它的內切圓半徑為.
組卷:1917難度:0.7 -
16.若點A(m,n)關于原點的對稱點B的坐標是(-3,2),則m+n=.
組卷:94引用:2難度:0.7
三.解答題(本大題共8小題,滿分72分)
-
17.如圖,在△ABC中,AC=BC,∠ACB=90°,D是線段AC延長線上一點,連接BD,過點A作AE⊥BD于 E.
(1)求證:∠CAE=∠CBD.
(2)將射線AE繞點A順時針旋轉45°后,所得的射線與線段BD的延長線交于點F,連接CE.
①依題意補全圖形;
②用等式表示線段EF,CE,BE之間的數量關系,并證明.組卷:653難度:0.4 -
18.如圖,已知△ABC中,AB=AC,BD、CE是高,BD與CE相交于點O
(1)求證:OB=OC;
(2)若∠ABC=50°,求∠BOC的度數.組卷:8006引用:34難度:0.3 -
19.在平面直角坐標系中,已知拋物線經過A(-4,0),B(0,-4),C(2,0)三點.
(1)求拋物線的解析式;
(2)若點P為拋物線對稱軸上一個動點,求△PBC周長最小時的P點坐標;
(3)若點M為第三象限內拋物線上一動點,點M的橫坐標為m,△AMB的面積為S.求S關于m的函數關系式,并求出S的最大值和M點的坐標.組卷:147引用:3難度:0.4 -
20.為支持大學生勤工儉學,市政府向某大學生提供了1萬元的無息貸款用于銷售某種自主研發(fā)的產品,并約定該學生用經營的利潤逐步償還無息貸款,已知該產品的生產成本為每件10元.每天還要支付其他費用25元.該產品每天的銷售量y(件)與銷售單價x(元)關系為y=-x+40.
(1)設每天的利潤為w元,當銷售單價定為多少元時,每天的利潤最大?最大利潤為多少元?(注:每天的利潤=每天的銷售利潤一每天的支出費用)
(2)若銷售單價不得低于其生產成本,且銷售每件產品的利潤率不能超過50%,則該學生最快用多少天可以還清無息貸款?組卷:7難度:0.6 -
21.如圖,四邊形ABCD內接于⊙O,AC平分∠BCD.
(1)如圖1,求證:AB=AD;
(2)如圖2,點E在弧AD上,弧CE=弧BC,延長CD、AE交于點F,求證:AF=AD.
(3)在(2)的條件下,如圖3,連接ED并延長ED交AC延長線于點P,連接PF,若PF=AF=4,PE=10,求⊙O的半徑.5組卷:103引用:1難度:0.3 -
22.在Rt△ABC中,∠BAC=90°,AB=AC,以AC為邊向外作△ACD.
(1)如圖1,若BC=4,CD=2,∠ACD=90°,求AD的長度.2
(2)如圖2,過點A作AF⊥CD交DC的延長線于點F,AF與BC交于點E,∠BCF=∠CAD.連接BD,與AF交于點M,求證:CD=2MF.組卷:169引用:1難度:0.5 -
23.已知a,b,c均為實數,且
+|b+1|+(c+3)2=0,求關于x的方程ax2+bx+c=0的根.a-2組卷:879引用:58難度:0.5 -
24.如圖,在△ABC中,點D是BC邊上一點,且AD=CD,以AD為直徑的⊙O分別交AC,BC于點E,F,過點E作EH⊥BC于點H.
(1)求證:EH是⊙O切線.
(2)若AB=4,cosB=,求EH.35組卷:6引用:1難度:0.5