2024年福建省福州市倉山區(qū)時代中學中考數(shù)學適應(yīng)性試卷(4月份)
發(fā)布:2025/7/18 10:0:9
一、選擇題(本題共10小題,每小題4分,共40分,在每小題的四個選項中,只有一項是符合
-
1.如圖,正六邊形A1B1C1D1E1F1的邊長為2,正六邊形A2B2C2D2E2F2的外接圓與正六邊形A1B1C1D1E1F1的各邊相切,正六邊形A3B3C3D3E3F3的外接圓與正六邊形A2B2C2D2E2F2的各邊相切,…按這樣的規(guī)律進行下去,A10B10C10D10E10F10的邊長為( ?。?/h2>
組卷:2416引用:39難度:0.9 -
2.如圖是由5相同的小正方體搭成的幾何體,其左視圖為( )
組卷:107引用:2難度:0.8 -
3.三峽大壩全長約2309米,這個數(shù)據(jù)用科學記數(shù)法表示為( )米.
組卷:51引用:49難度:0.9 -
4.我縣近幾年的初中畢業(yè)生出現(xiàn)持續(xù)增長趨勢,2020年的初三畢業(yè)生大約15000人,2022年的初三畢業(yè)生大約16500人.若設(shè)這兩年的平均增長率為x,則x應(yīng)滿足的方程是( )
組卷:20引用:1難度:0.6 -
5.如圖,∠ABC=90°,BD⊥AC,下列關(guān)系式中不一定成立的是( ?。?br />
組卷:234引用:3難度:0.8 -
6.下面是一位同學做的四道題①(a+b)2=a2+b2,②(2a2)2=-4a4,③a5÷a3=a2,④a3?a4=a12.其中做對的一道題的序號是( ?。?/h2>
組卷:93引用:5難度:0.9 -
7.一組數(shù)據(jù)2,0,1,x,3的平均數(shù)是2,則這組數(shù)據(jù)的方差是( )
組卷:386引用:57難度:0.9 -
8.如圖,已知?ADBC的頂點A(0,2),D(1,0),點B在x軸正半軸上,按以下步驟作圖:①以點D為圓心,適當長度為半徑作弧,分別交邊DA,DB于點E,F(xiàn);②分別以點E,F(xiàn)為圓心,大于
的長為半徑作弧,兩弧在∠ADB內(nèi)交于點G;③作射線DG,交邊AC于點H,則點H的坐標為( ?。?/h2>12EF組卷:184引用:4難度:0.5 -
9.已知函數(shù)y=
的圖象過點(-1,-2),則該函數(shù)的圖象必在( ?。?/h2>kx組卷:731引用:3難度:0.6 -
10.設(shè)a>0,則a與
的大小關(guān)系為( )a組卷:45引用:1難度:0.6
二、填空題(本題共有6小題,每小題4分,共24分)
-
11.如圖,在Rt△ABC中,∠A=90°,∠ABC的平分線BD交AC于點D,DE⊥BC于E,AD=3,DC=4,則DE=.
組卷:509引用:3難度:0.6 -
12.如圖,對稱軸平行于y軸的拋物線與x軸交于(1,0),(3,0)兩點,則它的對稱軸為直線
組卷:282引用:6難度:0.7 -
13.菱形ABCD在直角坐標系中的位置如圖所示,其中點A的坐標為(1,0),點B的坐標為(0,
),動點P從點A出發(fā),沿A→B→C→D→A→B→…的路徑,在菱形的邊上以每秒0.5個單位長度的速度移動,移動到第2015秒時,點P的坐標為 .3組卷:3523引用:64難度:0.7 -
14.如圖所示,是某校初中三個年級男女生人數(shù)的條形統(tǒng)計圖,則學生最多的年級是 .
組卷:344引用:30難度:0.9 -
15.計算:(-
)3÷(-ab)-2=.ab2組卷:42引用:1難度:0.8 -
16.高出海平面129米記為+129米,那么-45米表示的是 .
組卷:59引用:1難度:0.5
三、解答題(本題共9小題,共86分,解答應(yīng)寫出文字說明、證明過程或演算步驟)
-
17.如圖,已知拋物線與x軸交于A(1,0)、B(-4,0)兩點,與y軸交于點C(0,-2).
(1)求拋物線的解析式;
(2)如圖1,點P為拋物線上一動點,且在第二象限,過點P作PE垂直x軸交于點E,是否存在這樣的點P,使得以點P,E,A為頂點的三角形與△AOC相似?若存在,求出點P的坐標;若不存在,請說明理由;
(3)如圖2,若直線BD交拋物線于點D,且tan∠DBA=,作一條平行于X軸的直線交拋物線于G、H兩點,若以GH為直徑的圓與直線BD相切,求此圓的半徑.34組卷:125引用:1難度:0.1 -
18.計算:|-
|-3+(12)-1+2sin60°.16組卷:26引用:50難度:0.7 -
19.如圖,BD為△ABC外接圓⊙O的直徑,且∠BAE=∠C.
(1)求證:AE與⊙O相切于點A;
(2)若AE∥BC,BC=2,AC=27,求AD的長.2組卷:5894引用:16難度:0.3 -
20.已知關(guān)于x,y的方程組
的解滿足不等式組x-2y=m①2x+3y=2m+4②,求滿足條件的m的整數(shù)值.3x+y≤0x+5y>0組卷:13436引用:61難度:0.5 -
21.已知四邊形ABCD是矩形,AB=2,BC=4,E為BC邊上一動點且不與B、C重合,連接AE.
(1)如圖1,過點E作EN⊥AE交CD于點N若BE=1,求CN的長;
(2)如圖2,連接BD,當AE⊥BD于F,求△ADF的面積的值;
(3)如圖3,EN⊥AE交CD于點N將△ECN沿EN翻折,點C落在邊AD上,求BE的長.組卷:68引用:2難度:0.2 -
22.如圖,在四邊形ABCD中,AB∥CD,連接BD,點E在BD上,連接CE,若∠1=∠2,AB=ED,求證:DB=CD.
組卷:2400引用:14難度:0.5 -
23.先化簡,再求值:(
+1x+y)÷1y-x,其中x=2,y=-1.y2xy-y2組卷:900引用:4難度:0.6 -
24.“五一”假期,黔西南州某公司組織部分員工分別到甲、乙、丙、丁四地考查,公司按定額購買了前往各地的車票,如圖所示是用來制作完整的車票種類和相應(yīng)數(shù)量的條形統(tǒng)計圖,根據(jù)統(tǒng)計圖回答下列問題:
(1)若去丁地的車票占全部車票的10%,請求出去丁地的車票數(shù)量,并補全統(tǒng)計圖(如圖所示).
(2)若公司采用隨機抽取的方式發(fā)車票,小胡先從所有的車票中隨機抽取一張(所有車票的形狀、大小、質(zhì)地完全相同、均勻),那么員工小胡抽到去甲地的車票的概率是多少?
(3)若有一張車票,小王和小李都想去,決定采取摸球的方式確定,具體規(guī)則:“每人從不透明袋子中摸出分別標有1、2、3、4的四個球中摸出一球(球除數(shù)字不同外完全相同),并放回讓另一人摸,若小王摸得的數(shù)字比小李的小,車票給小王,否則給小李.”試用列表法或畫樹狀圖的方法分析這個規(guī)則對雙方是否公平?組卷:2264引用:67難度:0.3 -
25.北京時間2015年04月25日14時11分,尼泊爾發(fā)生8.1級強烈地震,我國積極組織搶險隊赴地震災(zāi)區(qū)參與搶險工作.如圖,某探測隊在地面A、B兩處均探測出建筑物下方C處有生命跡象,已知探測線與地面的夾角分別是25°和60°,且AB=4米,求該生命跡象所在位置C的深度.(結(jié)果精確到1米.參考數(shù)據(jù):sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,
≈1.7)3組卷:2681引用:60難度:0.5