如圖,在△ABC中,點(diǎn)D在BC的延長(zhǎng)線上,|BD|=3|DC|,如果h→AD=xh→AB+yh→AC,那么( )
h→
AD
=
x
h→
AB
+
y
h→
AC
x = 1 2 , y = 3 2 | x = - 1 2 , y = 3 2 |
x = - 1 2 , y = - 3 2 | x = 1 2 , y = - 3 2 |
【考點(diǎn)】平面向量的基本定理.
【答案】B
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/29 8:0:10組卷:211引用:5難度:0.7
相似題
-
1.設(shè)D為△ABC所在平面內(nèi)一點(diǎn),且滿足
=3h→CD,則( )h→BDA. =h→AD-32h→AB12h→ACB. =h→AD32+h→AB12h→ACC. =h→AD43-h→AB13h→ACD. =h→AD43+h→AB13h→AC發(fā)布:2024/12/29 13:30:1組卷:146引用:5難度:0.7 -
2.在△ABC中,已知
,若向量h→DB=-2h→DC,h→AB=h→a,則以下各式正確的是( ?。?/h2>h→AC=h→bA. h→AD=-2h→a+h→bB. h→AD=12h→a+12h→bC. h→AD=13h→a+23h→bD. h→AD=23h→a+13h→b發(fā)布:2024/12/31 18:30:4組卷:70引用:1難度:0.8 -
3.平行四邊形ABCD中,E為AD邊上的中點(diǎn),連接BE交AC于點(diǎn)G,若
,則λ+μ=( )h→AG=λh→AB+μh→ADA.1 B. 56C. 23D. 13發(fā)布:2025/1/5 18:30:5組卷:163引用:2難度:0.7